1.Effect of piperphentonamine hydrochloride on expressions of interleukin-1β and TNF-α mRNA and Fas protein in guinea pigs with cochlear ischemia/reperfusion injury.
Yonghe LI ; Wei LI ; Jian WU ; Hao CHEN ; Liangcai WAN
Journal of Southern Medical University 2013;33(11):1669-1672
OBJECTIVETo investigate the relationship between IL-1β and TNF-α mRNA and Fas protein expressions and cochlear ischemia reperfusion injury and investigate the protective mechanism of PPTA against cochlear reperfusion injury.
METHODSSixty-four guinea pigs were randomly divided into normal control group, blank control group, ischemia/reperfusion (by clamping the bilateral vertebral artery and right common carotid artery for 1 h) control group, and ischemia/reperfusion with PPTA treatment group. In PPTA group, PPTA was injected via the femoral vein immediately after reperfusion, and ischemia/reperfusion control group received saline injection. In 6 guinea pigs from each group, the cochlear tissues were removed after 24 h of reperfusion for examination of expressions of IL-1β and TNF-α mRNA by real-time PCR, and the rest animals were used for immunohistochemical detection of Fas protein.
RESULTSCompared with those of normal group and blank control group, the expressions of IL-1β and TNF-β mRNA increased significantly after cochlear ischemia/reperfusion (P<0.001), but were lowered significantly by PPTA (P<0.001). Positive expression of Fas protein expression was detected in the Corti organ, spiral ganglion and stria vascularis in ischemia/reperfusion control group with significantly higher IOD values than those of the other 3 groups (P<0.05). The IOD value showed no significant difference between PPTA-treated group, normal control group, and blank control group (P>0.05).
CONCLUSIONSPPTA can suppress the expression of Fas protein and IL-1β and TNF-β mRNAs in the cochlea of guinea pigs with cochlear ischemia/reperfusion. The protective effect of PPTA against cochlear ischemia/reperfusion is mediated probably by inhibition of inflammatory responses and cell apoptosis.
3,4-Methylenedioxyamphetamine ; analogs & derivatives ; pharmacology ; Animals ; Cochlea ; blood supply ; metabolism ; pathology ; Female ; Guinea Pigs ; Interleukin-1beta ; genetics ; metabolism ; Male ; Neuroprotective Agents ; pharmacology ; Organ of Corti ; metabolism ; RNA, Messenger ; metabolism ; Random Allocation ; Reperfusion Injury ; metabolism ; Spiral Ganglion ; metabolism ; Stria Vascularis ; metabolism ; Tumor Necrosis Factor-alpha ; genetics ; metabolism ; fas Receptor ; metabolism
2.The characteristics of resting membrane potential on smooth muscle cells and endothelial cells in guinea pigs cochlea spiral artery.
Li LI ; Ke-Tao MA ; Lei ZHAO ; Wen-Yan SHI ; Xin-Zhi LI ; Zhong-Shuang ZHANG ; Jun-Qiang SI
Chinese Journal of Applied Physiology 2012;28(2):128-132
OBJECTIVEA variety of inner ear disease is related to microcirculation disturbance of inner ear, but smooth muscle cells (SMC) and endothelial cells (EC) of the spiral modiolar artery (SMA), which is the main blood supply to the inner ear, physiological feature is not very clear.
METHODSIn this study, two-intracellular microelectrode recording technique and cell staining techniques to study the SMC and EC resting membrane potential characteristics and communication links between cells of SMA.
RESULTSStudy found that SMC and EC have high and low resting membrane potential state, two state of the resting membrane potential of cells to ACh and high K+ response is completely different. The different types of cells, EC-EC, SMC-SMC and SMC-EC, can simultaneously record by two-microelectrode, two cell resting membrane potential can also be a double-high RP, double-low RP and one high- and one low- RP. Experiment recorded in one high- and one low- RP are the SMC-EC types, and ECs initial membrane potential are high potential, SMCs membrane potential are low initial potential. The double-high and double-low RP can be SMC-SMC or EC-EC or SMC-EC types.
CONCLUSIONThe results show that SMC and EC in the 0.3 - 0.5 mm range, similar type of cells have very good communication, can function together to maintain good and consistent, heterogeneous cell performance is more different.
Animals ; Arteries ; cytology ; Cochlea ; blood supply ; physiology ; Endothelial Cells ; physiology ; Guinea Pigs ; Membrane Potentials ; physiology ; Myocytes, Smooth Muscle ; physiology
3.Effect of intervention of granules of eliminating phlegm and removing blood stasis in cochlear morphology of diabetic rats.
China Journal of Chinese Materia Medica 2011;36(2):209-215
OBJECTIVETo study the effectiveness of the granules of eliminating phlegm and removing blood stasis (GEPRB) on glucose metabolism for diabetic rats induced by streptozotocin and that on early diabetic rats cochlear histopathology.
METHODIntraperitoneally inject streptozotocin disposable of dose of 55 mg x kg(-1), so that a model of diabetic rats is created, and treated by, and simultaneously treated by Duxil as matched groups for positive, then observe the blood glucose of each group, the histopathology of cochlear, and any circumstantial change of their microstructures.
RESULTGEPRB can reduce the cumulating thickness of the basilar membrane and that of the vascular pattern, so as to tighten up the sparsity of the spiral ganglion cells.
CONCLUSIONGEPRB is rather effective on hypoglycemic for the diabetic rat model, and therapeutic goal can be achieved by improving the pathological changes of the cochlea damaged. The improvement by GEPRB for microangiopathic change of the cochlea capillary is probably the pathological basis of relieving hearing loss.
Animals ; Cochlea ; anatomy & histology ; blood supply ; drug effects ; Diabetes Complications ; drug therapy ; Disease Models, Animal ; Dosage Forms ; Drugs, Chinese Herbal ; administration & dosage ; Ear Diseases ; drug therapy ; Humans ; Male ; Rats ; Rats, Sprague-Dawley
4.Comparison of electrophysiological properties of vascular smooth muscle cells in different arterioles in guinea pig.
Ke-Tao MA ; Xin-Zhi LI ; Li LI ; Zhi-Ping ZHANG ; Lei ZHAO ; He ZHU ; Jun-Qiang SI
Acta Physiologica Sinica 2010;62(5):421-426
Arterioles are major contributors to the control of systemic blood pressure and local blood flow. In this study, we compared electrophysiological properties of vascular smooth muscle cells (VSMCs) in anterior inferior cerebellar artery (AICA), mesenteric artery (MA) and spiral modiolar artery (SMA) by intracellular microelectrode recording and whole-cell patch clamp recording techniques. Results were shown as below: (1) Intracellular microelectrode recordings were made from VSMCs in AICA, MA and SMA with resting potentials of (-68±1.8) (n=65), (-71±2.4) (n=80) and (-66±2.9) mV (n=58), respectively. There was no significant difference in resting potentials among arterioles. (2) The membrane capacitance and membrane conductance in situ cells were much larger than those in dispersed smooth muscle cells by whole-cell recording techniques, and there was significant difference among arterioles, which were in the order: MA>AICA>SMA. After application of gap junction blocker 2-APB (100 μmol/L), the membrane capacitance and membrane conductance in situ cells were very close with those in single smooth muscle cells. (3) The I/V relation of whole-cell current of dissociated smooth muscle cells (AICA, MA and SMA) showed a prominent outward rectification, and the currents were substantially inhibited by 1 mmol/L 4-AP or 10 mmol/L TEA. When the command voltage was +40 mV, the current densities of VSMCs in AICA, MA and SMA were (26±2.0), (24±1.7) and (18±1.3) pA/pF respectively. SMA showed significant difference in the current density from AICA and MA respectively. These results suggest that the electrophysiological properties of coupling strength of gap junction and current density of smooth muscle cells are different among arterioles in the guinea pig.
Animals
;
Arterioles
;
cytology
;
physiology
;
Cerebellum
;
blood supply
;
Cochlea
;
blood supply
;
Electrophysiological Phenomena
;
Female
;
Guinea Pigs
;
Male
;
Mesenteric Arteries
;
cytology
;
Muscle, Smooth, Vascular
;
cytology
;
physiology
5.Acetylcholine induces hyperpolarization independent of NO-release in guinea pig spiral modiolar artery.
Li LI ; Lei ZHAO ; Jun-Qiang SI
Chinese Journal of Applied Physiology 2009;25(1):107-111
AIMAcetylcholine(ACh) is a neurotransmitter and a potent vasodilator in many vascular beds. ACh hyperpolarizes the smooth muscle cells(SMCs) of arteries including the cochlear spiral modiolar artery(SMA) via an endothelium-dependent mechanism, but the biochemical and biophysical basis of the hyperpolarization and vasodilation remain unclear and controversial.
METHODSUsing intracellular recording techniques and an in vitro preparation of the SMA, the ionic mechanism of the hyperpolarization and a possible role of nitric oxide(NO) were investigated.
RESULTSWith 5 mmol/L K(+) in the bathing solution and a minimum longitudinal tension, ACh (0.1-10 micromol/L) induced a robust hyperpolarization in low RP cells but caused a depolarization in the high RP cells. The ACh hyperpolarization was fast in onset and offset and the amplitude was concentration-dependent(22 and 30 mV by 1 micromol/L and 10 micromol/L ACh, respectively, n = 7 ). ACh also hyperpolarized the cells that initially had a high resting potential (RP) but were pre-depolarized by Ba(2+) (50-100 micromol/L). The onset time courses of the hyperpolarization were often slower in these cases than those without the presence of Ba(2+) . The ACh-induced hyperpolarization was blocked by atropine (0.1- 1 micromol/L, n = 6) or DAMP (50 -100 nmol/L, n = 6, a selective M3 antagonist) and also by BAPTA-AM (10 micromol/L, n = 7, a membrane-permeable Ca(2+)-chelator), or charybdotoxin plus apamin (50-100 nmol/L, n= 4, Ca(2+) -activated K(+) -channel blockers), but not by Nomega-nitro-L-arginine methyl ester (L-NAME, 300 micromol/L, n = 8, an inhibitor of NO-synthase), glipizide (10 micromol/L, n = 4, ATP-sensitive K(+) -channel blocker) and indomethacin (10 micromol/L, n = 4, cyclo-oxygenase inhibitor).
CONCLUSIONIt is concluded that ACh-induced hyperpolarization in the arterial SMCs is primarily due to an activation of calcium-activated potassium channels via M3 receptors of endothelial cell and is independent of NO-release in the spiral modiolar artery.
Acetylcholine ; physiology ; Animals ; Arteries ; Cell Polarity ; physiology ; Cochlea ; blood supply ; physiology ; Guinea Pigs ; Membrane Potentials ; physiology ; Muscle, Smooth, Vascular ; metabolism ; physiology ; Nitric Oxide ; metabolism ; Potassium Channels, Calcium-Activated ; metabolism ; Receptor, Muscarinic M3 ; metabolism
6.Niflumic acid hyperpolarizes the smooth muscle cells by opening BK(Ca) channels through ryanodine-sensitive Ca(2+) release in spiral modiolar artery.
Li LI ; Ke-Tao MA ; Lei ZHAO ; Jun-Qiang SI
Acta Physiologica Sinica 2008;60(6):743-750
The mechanism by which niflumic acid (NFA), a Cl(-) channel antagonist, hyperpolarizes the smooth muscle cells (SMCs) of cochlear spiral modiolar artery (SMA) was explored. Guinea pigs were used as subjects and perforated patch clamp and intracellular recording technique were used to observe NFA-induced response of SMC in the acutely isolated SMA preparation. The results showed that bath application of NFA, indanyloxyacetic acid 94 (IAA-94) and disodium 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS) caused hyperpolarization and evoked outward currents in all cells at low resting potential (RP), but had no effects in cells at high RP. In the low RP SMCs, the average RP was about (-42.47+/-1.38) mV (n=24). Application of NFA (100 mumol/L), IAA-94 (10 mumol/L) and DIDS (200 mumol/L) shifted the RP to (13.7+/-4.3) mV (n=9, P<0.01), (11.4+/-4.2) mV (n=7, P<0.01) and (12.3+/-3.7) mV (n=8, P<0.01), respectively. These drug-induced responses were in a concentration-dependent manner. NFA-induced hyperpolarization and outward current were almost blocked by charybdotoxin (100 nmol/L), iberiotoxin (100 nmol/L), tetraethylammonium (10 mmol/L), BAPTA-AM (50 mumol/L), ryanodine (10 mumol/L) and caffeine (0.1-10 mmol/L), respectively, but not by nifedipine (100 mumol/L), CdCl2 (100 mumol/L) and Ca(2+)-free medium. It is concluded that NFA induces a release of intracellular calcium from the Ca(2+) stores and the released intracellular calcium in turn causes concentration-dependent and reversible hyperpolarization and evokes outward currents in the SMCs of the cochlear SMA via activation of the Ca(2+)-activated potassium channels.
Animals
;
Arteries
;
metabolism
;
Calcium
;
physiology
;
Cochlea
;
blood supply
;
Guinea Pigs
;
Large-Conductance Calcium-Activated Potassium Channels
;
physiology
;
Membrane Potentials
;
Myocytes, Smooth Muscle
;
drug effects
;
physiology
;
Niflumic Acid
;
pharmacology
;
Ryanodine
;
pharmacology
7.The effects of carbogen inhalation on microvascular within lateral wall of cochlear following acute acoustic trauma.
Jing ZHAO ; Jianjun SUN ; Weijia KONG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2008;22(22):1036-1039
OBJECTIVE:
To explore the influence of carbogen on lateral wall microvascular of cochlear after acute acoustic trauma.
METHOD:
Forty guinea pigs were divided into 4 groups: group A (noise damage), group B (carbogen inhalation), group C (noise damage + carbogen inhalation), and the control group without any treatment. The diameter of the column of RBCs (RBC column diameter, RBCCD), blood flow velocity (BFV) and blood flow states(BFS) in microvasculature were measured and described under microscope.
RESULT:
The microvascular in group A demonstrated a blood flow in contrary direction, granuliform flow, and granular slow flow. The erythrocytes aggregated in the microvascular of the cochlea. The RBCCD decreased 12.1% compared with the control group (P < 0.05). The blood flow in group B showed a laminar flow or laminar granular flow, and the RBCCD increased 20.7% compared with the control group. The blood condition in group C was the same as the control group-laminar granular blood flow; the blood flow with contrary direction was less than group A, and the RBCCD was 17.4% lager than that of group A.
CONCLUSION
Carbogen can dilate the RBCCD and increase the BFV in stria vascular. So carbogen can alleviate the harm from noise.
Animals
;
Blood Flow Velocity
;
Carbon Dioxide
;
administration & dosage
;
therapeutic use
;
Cochlea
;
blood supply
;
Erythrocytes
;
cytology
;
Female
;
Guinea Pigs
;
Hearing Loss, Noise-Induced
;
pathology
;
therapy
;
Male
;
Microcirculation
;
Oxygen
;
administration & dosage
;
therapeutic use
8.Micro- and ultra-morphological changes of cochlear vessels in spontaneously hypertensive rats.
Yan-zhen YANG ; Shu-sheng GONG ; Qing-song YU
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2007;42(8):620-622
Animals
;
Blood Vessels
;
pathology
;
ultrastructure
;
Cochlea
;
blood supply
;
Female
;
Male
;
Rats
;
Rats, Inbred SHR
;
Rats, Wistar
9.Morphology effects of shear stress in cochlear microvascular endothelial cells in guinea pigs.
Wei YUAN ; Xue-Yuan ZHANG ; Yun-Jun WEI ; Qi LI ; Cheng ZHONG
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2007;42(2):135-137
OBJECTIVETo observe the effects of different shear stresses on the morphological changes in cochlear microvascular endothelial cells cultured in vitro so as to enrich the mechanism of the blood-labyrinth barrier.
METHODSThe morphological photos of cochlear microvascular endothelial monolayer cells were obtained with the hydrodynamic system design and the morphological parameters such as Pyx and Q were detected.
RESULTSThrough digestion with collagenase type I, the monolayer cells of cochlear microvascular endothelial monolayer were obtained. As to cochlear microvascular endothelial cells in guinea pigs, no morphological changes of the cells were found when shear stresses of 0. 0883 Pa acting for 24 h. When shear stress was 0.1184 Pa acting for 8 h, compliant changes from former disorderliness into orderliness happened following the direction of the flowing liquid of the cellular morphology. The changing tendency was in a time-dependent manner.
CONCLUSIONSCochlear microvascular endothelial cells in guinea pigs after the effect of shear stress are morphologically different from statically cultured endothelial cells. Range of the shear stress that cochlear microvascular endothelial cells can tolerate is little.
Animals ; Cells, Cultured ; Cochlea ; blood supply ; Endothelial Cells ; cytology ; Endothelium, Vascular ; cytology ; Guinea Pigs ; Shear Strength ; Stress, Mechanical
Result Analysis
Print
Save
E-mail