1.Identification of prognosis-related genes in hepatocellular carcinoma based on bioinformatical analysis
SUN Houfang ; YAN Cihui ; WU Lei ; LI Baihui ; YANG Lili
Chinese Journal of Cancer Biotherapy 2019;26(4):431-439
Objective: To identify the differentially expressed genes (DEGs) between hepatocellular carcinoma (HCC) tissues and normal liver tissues by bioinformatic methods, and to explore the intrinsic mechanism of these candidate genes involving in the occurrence and development of HCC from transcriptome level as well as the clinical significance of their associations with the prognosis of HCC patients. Methods: Gene expression profiles of GSE45267, GSE64041, GSE84402 and TCGA were downloaded from GEO (Gene Expression Omnibus) and TCGA(The Cancer GenomeAtlas), respectively. R software and Bioconductor packages were used to identify the DEGs between HCC tissues and para-cancer tissues, and then Gene Ontology (GO) Enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, Protein-Protein Interaction (PPI) network analysis and survival analysis were performed. Results: Forty-six up-regulated genes and 154 down-regulated genes were screened out,and GO enrichment analysis showed that these DEGs were mainly related to cell division, proliferation, cycle regulation, oxidation-reduction process and certain metabolic pathways. KEGG pathway analysis revealed that DEGs were mainly involved in tryptophan metabolism, retinol metabolism and other metabolic pathways as well as p53 pathway. Over-expression of a panel of up-regulated genes (CCNA2, CDK1, DLGAP5, KIF20A, KPNA2 and MELK) was shown to be significantly negatively correlated with the prognosis of HCC patients in the TCGA dataset (all P<0.01). Conclusion: A set of up-regulated hub genes that are negatively correlated with prognosis will provide potential guiding value for the clinical research on the diagnosis and treatment of HCC.
2.Preparation, performance and characterization of bioactive bone materials with plasticity
Ming LU ; Xuesong ZHANG ; Li CHANG ; Xinai CUI ; Chao LIU ; Cihui LI ; Xiangjie LI
Chinese Journal of Tissue Engineering Research 2015;19(21):3323-3328
BACKGROUND:Foreign injectable sulphate calcium has good biocompatibility, injectability and in situimmobilization, moulding based on adaptation to the shape of bone defects, but the price is expensive. OBJECTIVE:To explore the optimal fabricating parameters of bone repair materials with α-calciumsulfate hemihydrates as the main component, and to study the performance and characterization METHODS:α-Calciumsulfate hemihydrates powder was mixed with sodium hyaluronate at liquid-solid-ratios of 0.2, 0.25, 0.3, 0.35, 0.4 mL/g using vapor-heat method to prepare injectable bone materials. Performance, setting time and compressive strength of the injectable bone was detected. The best liquid-solid-ratio was 0.3 mL/g.α-Calcium sulfate hemihydrates powder was mixed with calcium sulfate dihydrate powder (1%, 2%, 3% mass fractionas) to fabricate injectable bone materials. Performance, setting time and compressive strength of the injectable bone was also detected; meanwhile, the biosafety of the injectable bone was determined. Theinjectable bone material that was made at the liquid-solid-ratio of 0.3 mL/g and by 2% calcium sulfate dihydrate was implanted into Ba-ma swine models of thoracic bone defects. At the time points of 8, 16 and 24 weeks after implantation, histological observation was done. RESULTS AND CONCLUSION: The injectable bone material was made at the liquid-solid-ratio of 0.3 mL/g and by 2% calcium sulfate dihydrate. The initial and final setting time was 4.0-5.0 minutes and 8.0-9.0 minutes, respectively. The compressive strength of the injectable bone reached (8.93±0.23) MPa. These findings indicate that the injectable boen material has good performance, initial setting time and compressive strength meeting the requirements of clinical application and good biosafety. Animal experiments show that the injectable bone can provide space for new bone in creeping substitution way by auto-degradation, with osteogenic activity.