1.Low-dose chloroquine treatment extends the lifespan of aged rats.
Wei LI ; Zhiran ZOU ; Yusheng CAI ; Kuan YANG ; Si WANG ; Zunpeng LIU ; Lingling GENG ; Qun CHU ; Zhejun JI ; Piu CHAN ; Guang-Hui LIU ; Moshi SONG ; Jing QU ; Weiqi ZHANG
Protein & Cell 2022;13(6):454-461
2.In vitro susceptibility of Plasmodium falciparum to four antimalarial drugs in the Central Province of Papua New Guinea
Papua New Guinea medical journal 1998;41(2):51-58
The susceptibility of Plasmodium falciparum to chloroquine, quinine, mefloquine and halofantrine was investigated in the Central Province of Papua New Guinea between March 1995 and September 1996, when chloroquine resistance was widely present in the country. The standard World Health Organization in vitro microtest methodology was used in the study. Of the 30 isolates tested for chloroquine susceptibility all were resistant to chloroquine with median IC50 of 1.15 mumol/l (range 0.54 to 4.24), indicating a high prevalence and degree of resistance. Three isolates each for quinine (3/31) and halofantrine (3/28) showed resistance at concentrations of 51.2 mumol/l and 10 nM respectively, while all 31 isolates tested for mefloquine were fully susceptible. The comparative analysis of median IC50 values between isolates resistant and susceptible to chloroquine showed chloroquine-resistant isolates to be less susceptible to quinine and halofantrine while fully susceptible to mefloquine. It seems that the evolution of chloroquine resistance together with increased use of quinine treatment of P. falciparum malaria may increase the risk of emergence of quinine resistance and possibly of halofantrine resistance as well. The development of mefloquine resistance, however, is independent of chloroquine resistance.
Antimalarials - pharmacology
;
Chloroquine - pharmacology
;
Drug Resistance, Microbial
;
Mefloquine - pharmacology
;
Microbial Sensitivity Tests
;
Papua New Guinea
3.Antimalarial activity of thiophenyl- and benzenesulfonyl-dihydroartemisinin.
Seok Joon LEE ; Sang Tae OH ; Gab Man PARK ; Tong Soo KIM ; Jae Sook RYU ; Han Kyu CHOI
The Korean Journal of Parasitology 2005;43(3):123-126
Each diastereomer of 10-thiophenyl- and 10-benzenesulfonyl-dihydroartemisinin was synthesized from artemisinin in three steps, and screened against chloroquine-resistance and chloroquine-sensitive Plasmodium falciparum. Three of the four tested compounds were found to be effective. Especially, 10 beta-benzenesulfonyl-dihydroartemisinin showed stronger antimalarial activity than artemisinin.
Animals
;
Antimalarials/chemistry/*pharmacology
;
Artemisinins/chemistry/*pharmacology
;
Chloroquine/pharmacology
;
Drug Resistance
;
Plasmodium falciparum/*drug effects
;
Research Support, Non-U.S. Gov't
4.Chloroquine inhibits viability of renal carcinoma cells and enhances sunitinib-induced caspase-dependent apoptosis.
Jing SUN ; Wei Dong SONG ; Si Yuan YAN ; Zhi Jun XI
Journal of Peking University(Health Sciences) 2018;50(5):778-784
OBJECTIVE:
To determine whether chloroquine (CQ), an often used inhibitor of late autophagy and autophagosome/lyosome fusion, can inhibit proliferation of renal carcinoma cells and investigate its effect on sunitinib (ST)-induced apoptosis.
METHODS:
Renal carcinoma cell line 786 O and ACHN had been used as cellular model and 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay was carried out to detect the cell viability in response to CQ or ST treatment. Both transmission electron microscope and immunoblotting had been employed to observe apoptotic and autophagic process. To examine the involvement of autophagy in ST-dependent apoptosis, autophagy had been inhibited either chemically or genetically via utilizing autophagy inhibitor or specific small interference RNA (siRNA) targeted to either Ulk1 (unc-51-like kinase 1) or LC3 (microtubule associated protein 1 light chain 3 fusion protein), two essential autophagic proteins.
RESULTS:
Both ST and CQ induced cell viability loss, indicating that either of them could inhibit renal cancer cell proliferation. Clone formation experiments confirmed the aforementioned results. Furthermore, the combined ST with CQ synergistically promoted the loss of cell viability. By transmission electron microscopy and immunoblotting, we found that the ST induced both autophagy and caspase-dependent apoptosis. While 3-MA, an early autophagy inhibitor, reduced the ST-induced cleavage of poly (ADP-ribose) polymerase-1 (PARP-1), a substrate of caspase 3/7 and often used marker of caspase-dependent apoptosis, CQ promoted the ST-dependent PARP-1 cleavage, indicating that the early and late autophagy functioned differentially on the ST-activated apoptotic process. Moreover, the knock down of either Ulk1 or LC3 decreased the ST-caused apoptosis.Interestingly, we observed that rapamycin, a specific inhibitor of mTOR (mammalian target of rapamycin) and an inducer of autophagy, also showed to inhibit cell viability and increased the cleavage of PARP-1 in the ST-treated cells, suggesting that autophagy was likely to play a dual role in the regulation of the ST-induced apoptosis.
CONCLUSION
ST activates both apoptotic and autophagic process in renal carcinoma cells. Although autophagy precedes the ST-induced apoptosis, however, early and late autophagy functions differentially on the apoptotic process induced by this compound. Additionally, ST can coordinate with the inducer of autophagy to inhibit the cell proliferation. Further research in this direction will let us illuminate to utilize CQ as a potential drug in the treatment of renal carcinoma.
Animals
;
Antineoplastic Agents/pharmacology*
;
Antirheumatic Agents/pharmacology*
;
Apoptosis/drug effects*
;
Autophagy/drug effects*
;
Caspases
;
Cell Line, Tumor
;
Chloroquine/pharmacology*
;
Kidney Neoplasms/drug therapy*
;
Sunitinib/pharmacology*
5.Lysosomal membrane protein Sidt2 knockout induces apoptosis of human hepatocytes in vitro independent of the autophagy-lysosomal pathway.
Jiating XU ; Mengya GENG ; Haijun LIU ; Wenjun PEI ; Jing GU ; Mengxiang QI ; Yao ZHANG ; Kun LÜ ; Yingying SONG ; Miaomiao LIU ; Xin HU ; Cui YU ; Chunling HE ; Lizhuo WANG ; Jialin GAO
Journal of Southern Medical University 2023;43(4):637-643
OBJECTIVE:
To explore the regulatory mechanism of human hepatocyte apoptosis induced by lysosomal membrane protein Sidt2 knockout.
METHODS:
The Sidt2 knockout (Sidt2-/-) cell model was constructed in human hepatocyte HL7702 cells using Crispr-Cas9 technology.The protein levels of Sidt2 and key autophagy proteins LC3-II/I and P62 in the cell model were detected using Western blotting, and the formation of autophagosomes was observed with MDC staining.EdU incorporation assay and flow cytometry were performed to observe the effect of Sidt2 knockout on cell proliferation and apoptosis.The effect of chloroquine at the saturating concentration on autophagic flux, proliferation and apoptosis of Sidt2 knockout cells were observed.
RESULTS:
Sidt2-/- HL7702 cells were successfully constructed.Sidt2 knockout significantly inhibited the proliferation and increased apoptosis of the cells, causing also increased protein expressions of LC3-II/I and P62(P < 0.05) and increased number of autophagosomes.Autophagy of the cells reached a saturated state following treatment with 50 μmol/L chloroquine, and at this concentration, chloroquine significantly increased the expressions of LC3B and P62 in Sidt2-/- HL7702 cells.
CONCLUSION
Sidt2 gene knockout causes dysregulation of the autophagy pathway and induces apoptosis of HL7702 cells, and the latter effect is not mediated by inhibiting the autophagy-lysosomal pathway.
Humans
;
Lysosome-Associated Membrane Glycoproteins/metabolism*
;
Autophagy
;
Apoptosis
;
Hepatocytes
;
Lysosomes/metabolism*
;
Chloroquine/pharmacology*
;
Nucleotide Transport Proteins/metabolism*
6.Gene transfer by novel non-viral vector polyethylenimine.
Jing-zhong LI ; Qing-qing WANG ; Hai YU ; Fen-ping SHEN ; Da LI ; Yi ZHENG
Journal of Zhejiang University. Medical sciences 2004;33(3):229-234
OBJECTIVETo investigate the influencing factors of polyethylenimine (PEI) in gene transfer in vitro.
METHODSCytotoxic effects of PEI on in vitro cultured NIH 3T3 cells were quantified by MTT assay. The interaction between PEI and DNA at different charge ratios was analyzed by agarose gel electrophoresis retardation assay. The expression of gene transfer was monitored in Cos-7 cells using pEGFP and pSV beta plasmids as the reporter gene systems. Influences of chloroquine, albumin, serum, salt ion strength, and Mg(2+) ion and other factors on PEI/DNA transfer efficiency were evaluated.
RESULTThe survival rate of NIH3T3 cells at 6 mg/L of PEI was 64.2% and at 7 mg/L of PEI was 54.4%. Gel electrophoresis retardation assays showed that PEI completely retarded DNA migration at 3.0 PEI nitrogen per DNA phosphate. Chloroquine enhanced the transfection efficiency of PEI. Albumin and serum in the culture medium decreased the transfection efficiency. HBS(HEPES buffered solution) or 150 mmol/L NaCl as the dilution solution of PEI/DNA was superior over 278 mmol/L glucose solution in the transfection efficiency. Mg(2+) in the dilution solution decreased the transfer efficiency of PEI/DNA.
CONCLUSIONPEI is efficient gene transfer agent of eukaryotes in vitro, and can be possibly used in vivo.
Animals ; COS Cells ; Cell Survival ; Chloroquine ; pharmacology ; Culture Media ; Gene Transfer Techniques ; Magnesium ; pharmacology ; Mice ; NIH 3T3 Cells ; Osmolar Concentration ; Polyethyleneimine ; pharmacology
7.Synthesis of propenamides with anti-malarial activities and 3D-QSAR study.
Mao-sheng CHENG ; Dong YAN ; Qian-li WANG ; Li ZHANG ; Jian-min SHEN
Acta Pharmaceutica Sinica 2003;38(7):505-510
AIMTo establish 3D QSAR model of propenamides with anti-malarial activities.
METHODSChemical synthesis combined with comparative molecular field analysis (CoMFA).
RESULTSGenerated QSAR models for activities of inhibiting chloroquine resistive malaria (W2) and chloroquine sensitive malaria (D6).
CONCLUSIONThe activity of anti-W2 depends mostly on steric interaction and the activity of anti-D6 depends on both steric and electrostatic interaction.
Acrylamides ; chemical synthesis ; chemistry ; pharmacology ; Animals ; Antimalarials ; chemical synthesis ; chemistry ; pharmacology ; Chloroquine ; pharmacology ; Drug Resistance ; Molecular Conformation ; Molecular Structure ; Plasmodium ; drug effects ; Quantitative Structure-Activity Relationship
8.Assessment of in vitro sensitivity of Plasmodium vivax fresh isolates.
Poonuch MUHAMAD ; Wanna CHACHAROENKUL ; Kanchana RUNGSIHIRUNRAT ; Ronnatrai RUENGWEERAYUT ; Kesara NA-BANGCHANG
Asian Pacific Journal of Tropical Biomedicine 2011;1(1):49-53
OBJECTIVETo compare the applicability of the SYBR Green-I assay with the standard schizont maturation assay, for determination of sensitivity of Plasmodium vivax (P. vivax) to chloroquine and a new antifolate WR 99210.
METHODSThe study was conducted at Mae Tao Clinic for migrant workers, Tak Province during April 2009 to July 2010. A total of 64 blood samples (1 mL blood collected into sodium heparinized plastic tube) were collected from patients with mono-infection with P. vivax malaria prior to treatment with standard regimen of a 3-day chloroquine. In vitro sensitivity of P. vivax isolates was evaluated by schizont maturation inhibition and SYBR Green-I assays.
RESULTSA total of 30 out of 64 blood samples collected from patients with P. vivax malaria were successfully analyzed using both the microscopic schizont maturation inhibition and SYBR Green-I assays. The failure rates of the schizont maturation inhibition assay (50%) and the SYBR Green-I assay (54%) were similar (P=0.51). The median IC10s, IC50s and IC90s of both chloroquine and WR99210 were not significantly different from the clinical isolates of P. vivax tested. Based on the cut-off of 100 nM, the prevalences of chloroquine resistance determined by schizont maturation inhibition and SYBR Green-I assays were 19 and 11 isolates, respectively. The strength of agreement between the two methods was very poor for both chloroquine and WR99210.
CONCLUSIONSOn the basis of this condition and its superior sensitivity, the microscopic method appears better than the SYBR Green-I Green assay for assessing in vitro sensitivity of fresh P. vivax isolates to antimalarial drugs.
Antimalarials ; pharmacology ; Chloroquine ; pharmacology ; Humans ; Inhibitory Concentration 50 ; Malaria, Vivax ; parasitology ; Organic Chemicals ; Parasitemia ; parasitology ; Parasitic Sensitivity Tests ; Plasmodium vivax ; drug effects ; isolation & purification ; Schizonts ; drug effects
9.Drug Resistance and in Vitro Susceptibility of Plasmodium falciparum in Thailand during 1988-2003.
Nantana SUWANDITTAKUL ; Wanna CHAIJAROENKUL ; Pongchai HARNYUTTANAKORN ; Mathirut MUNGTHIN ; Kesara NA BANGCHANG
The Korean Journal of Parasitology 2009;47(2):139-144
The aim of the present study was to investigate antimalarial drug pressure resulting from the clinical use of different antimalarials in Thailand. The phenotypic diversity of the susceptibility profiles of antimalarials, i.e., chloroquine (CQ), quinine (QN), mefloquine (MQ), and artesunate (ARS) in Plasmodium falciparum isolates collected during the period from 1988 to 2003 were studied. P. falciparum isolates from infected patients were collected from the Thai-Cambodian border area at different time periods (1988-1989, 1991-1992, and 2003), during which 3 different patterns of drug use had been implemented: MQ + sulphadoxine (S) + pyrimethamine (P), MQ alone and MQ + ARS, respectively. The in vitro drug susceptibilities were investigated using a method based on the incorporation of [3H] hypoxanthine. A total of 50 isolates were tested for susceptibilities to CQ, QN, MQ, and ARS. Of these isolates, 19, 16, and 15 were adapted during the periods 1988-1989, 1991-1993, and 2003, respectively. P. falciparum isolates collected during the 3 periods were resistant to CQ. Sensitivities to MQ declined from 1988 to 2003. In contrast, the parasite was sensitive to QN, and similar sensitivity profile patterns were observed during the 3 time periods. There was a significantly positive but weak correlation between the IC50 values of CQ and QN, as well as between the IC50 values of QN and MQ. Drug pressure has impact on sensitivity of P. falciparum to MQ. A combination therapy of MQ and ARS is being applied to reduce the parasite resistance, and also increasing the efficacy of the drug.
Animals
;
Antimalarials/*pharmacology/therapeutic use
;
Artemisinins/pharmacology/therapeutic use
;
Chloroquine/pharmacology/therapeutic use
;
*Drug Resistance
;
Humans
;
Malaria/drug therapy/*parasitology
;
Mefloquine/pharmacology/therapeutic use
;
Parasitic Sensitivity Tests/methods
;
Plasmodium falciparum/*drug effects/isolation & purification
;
Quinine/pharmacology/therapeutic use
;
Thailand
10.Effect of autophagy inhibitor chloroquine on the proliferation of PASMCs induced by hypoxia.
Huan-Mian ZHU ; Ran CHEN ; Feng XUE ; Yang-Ping SHENTU ; Xiao-Fang FAN ; Yong-Sheng GONG ; Hong-Yu ZHANG ; Xiao-Xia KONG
Chinese Journal of Applied Physiology 2014;30(1):8-12
OBJECTIVETo investigate the role of autophagy inhibitor chloroquine (CQ) in the proliferation of pulmonary arterial smooth muscle cells (PASMCs) in hypoxia conditions.
METHODSThe following groups in this study were set up: control group, hypoxia group, 50 micromol/L CQ + hypoxia group, 50 micromol/L CQ group. The viability of PASMCs in every group was detected by MTT assay. Autophagic vacuoles in the cells were observed by MDC staining. Protein expression of microtubule associated protein light chain 3 (LC3) was measured by Western blot. Migration of PASMCs was detected by wound healing assay.
RESULTSCompared with control group, no effect on the viability of PASMCs was observed treated by CQ alone. In 1% hypoxia group, cell viability increased significantly compared with that in control group. The number of autophagic vacuoles and the rate of cell migration and also protein expression of LC3-II were also markedly increased. Compared with hypoxia group, addition of CQ increased the number of autophagic vacuoles and the levels of LC3-II protein, but decreased the proliferation and migration of PASMCs.
CONCLUSIONHypoxia could activates autophagy and contributes to proliferation and migration of PASMCs, and autophagy inhibitor CQ could decrease the effect of hypoxia on PASMCs through inhibiting autophagy process.
Autophagy ; drug effects ; Cell Hypoxia ; Cell Movement ; Cell Survival ; Cells, Cultured ; Chloroquine ; pharmacology ; Humans ; Microtubule-Associated Proteins ; metabolism ; Myocytes, Smooth Muscle ; drug effects ; Pulmonary Artery ; cytology