1.TRODAT-1 and Tc-99m ECD observations in hyperglycemia hemichorea
in-Chien Tu ; Ching-Yuan Chen ; Chung-Ping Lo ; Chi-Chung Kuo
Neurology Asia 2016;21(1):85-87
We describe two cases of right hyperglycemia hemichorea (HGHC) with identical Tc-99m TRODAT-1/
Tc-99m ECD scan findings. While the brain MRI showed signal alterations within the left putamen,
there was evidence of hyperperfusion on Tc-99m TRODAT-1 but hypoperfusion on Tc-99m ECD
within the left putamen, in association with hyperperfusion within left thalamus on Tc-99m ECD.
The discrepancy between the Tc-99m TRODAT-1 and Tc-99m ECD scan provides insight into the
imbalance between direct and indirect circuits along the nigrostriatal pathway, as the fundamental
genesis of HGHC. Furthermore, the hyperperfusion at the left thalamus represents thalamic disinhibition
secondary to loss of pallidal negative control, which ultimately leads to HGHC through re-entrant
outflow to the motor cortex.
Hyperglycemia
2.Oral Lovastatin Attenuates Airway Inflammation and Mucus Secretion in Ovalbumin-Induced Murine Model of Asthma.
Chian Jiun LIOU ; Pei Yun CHENG ; Wen Chung HUANG ; Cheng Chi CHAN ; Meng Chun CHEN ; Ming Ling KUO ; Jiann Jong SHEN
Allergy, Asthma & Immunology Research 2014;6(6):548-557
PURPOSE: Lovastatin is an effective inhibitor of cholesterol synthesis. A previous study demonstrated that lovastatin can also suppress airway hyperresponsiveness (AHR) in murine model of asthma. We aimed to investigate the effect of lovastatin on mucus secretion and inflammation-associated gene expression in the lungs of murine model of asthma. METHODS: Female BALB/c mice were sensitized and challenged with ovalbumin (OVA) by intraperitoneal injection, and orally administered lovastatin from days 14 to 27 post-injection. Gene expression in lung tissues was analyzed using real-time polymerase chain reaction. AHR and goblet cell hyperplasia were also examined. BEAS-2B human bronchial epithelial cells were used to evaluate the effect of lovastatin on the expression of cell adhesion molecules, chemokines, and proinflammatory cytokines in vitro. RESULTS: We showed that lovastatin inhibits the expression of Th2-associated genes, including eotaxins and adhesion molecules, in the lungs of murine model of asthma. Mucin 5AC expression, eosinophil infiltration and goblet cell hyperplasia were significantly decreased in the lung tissue of murine model of asthma treated with lovastatin. Furthermore, lovastatin inhibited AHR and expression of Th2-associated cytokines in bronchoalveolar lavage fluid. However, a high dose (40 mg/kg) of lovastatin was required to decrease specific IgE to OVA levels in serum, and suppress the expression of Th2-associated cytokines in splenocytes. Activated BEAS-2B cells treated with lovastatin exhibited reduced IL-6, eotaxins (CCL11 and CCL24), and intercellular adhesion molecule-1 protein expression. Consistent with this, lovastatin also suppressed the ability of HL-60 cells to adhere to inflammatory BEAS-2B cells. CONCLUSIONS: These data suggest that lovastatin suppresses mucus secretion and airway inflammation by inhibiting the production of eotaxins and Th2 cytokines in murine model of asthma.
Animals
;
Asthma*
;
Bronchoalveolar Lavage Fluid
;
Cell Adhesion Molecules
;
Chemokines
;
Cholesterol
;
Cytokines
;
Eosinophils
;
Epithelial Cells
;
Female
;
Gene Expression
;
Goblet Cells
;
HL-60 Cells
;
Humans
;
Hyperplasia
;
Immunoglobulin E
;
Inflammation*
;
Injections, Intraperitoneal
;
Intercellular Adhesion Molecule-1
;
Interleukin-6
;
Lovastatin*
;
Lung
;
Mice
;
Mucin 5AC
;
Mucus*
;
Ovalbumin
;
Ovum
;
Real-Time Polymerase Chain Reaction
3.Treatment Response Evaluation by Computed Tomography Pulmonary Vasculature Analysis in Patients With Chronic Thromboembolic Pulmonary Hypertension
Yu-Sen HUANG ; Zheng-Wei CHEN ; Wen-Jeng LEE ; Cho-Kai WU ; Ping-Hung KUO ; Hsao-Hsun HSU ; Shu-Yu TANG ; Cheng-Hsuan TSAI ; Mao-Yuan SU ; Chi-Lun KO ; Juey-Jen HWANG ; Yen-Hung LIN ; Yeun-Chung CHANG
Korean Journal of Radiology 2023;24(4):349-361
Objective:
To quantitatively assess the pulmonary vasculature using non-contrast computed tomography (CT) in patients with chronic thromboembolic pulmonary hypertension (CTEPH) pre- and post-treatment and correlate CT-based parameters with right heart catheterization (RHC) hemodynamic and clinical parameters.
Materials and Methods:
A total of 30 patients with CTEPH (mean age, 57.9 years; 53% female) who received multimodal treatment, including riociguat for ≥ 16 weeks with or without balloon pulmonary angioplasty and underwent both noncontrast CT for pulmonary vasculature analysis and RHC pre- and post-treatment were included. The radiographic analysis included subpleural perfusion parameters, including blood volume in small vessels with a cross-sectional area ≤ 5 mm 2 (BV5) and total blood vessel volume (TBV) in the lungs. The RHC parameters included mean pulmonary artery pressure (mPAP), pulmonary vascular resistance (PVR), and cardiac index (CI). Clinical parameters included the World Health Organization (WHO) functional class and 6-minute walking distance (6MWD).
Results:
The number, area, and density of the subpleural small vessels increased after treatment by 35.7% (P < 0.001), 13.3% (P = 0.028), and 39.3% (P < 0.001), respectively. The blood volume shifted from larger to smaller vessels, as indicated by an 11.3% increase in the BV5/TBV ratio (P = 0.042). The BV5/TBV ratio was negatively correlated with PVR (r = -0.26; P = 0.035) and positively correlated with CI (r = 0.33; P = 0.009). The percent change across treatment in the BV5/TBV ratio correlated with the percent change in mPAP (r = -0.56; P = 0.001), PVR (r = -0.64; P < 0.001), and CI (r = 0.28; P = 0.049).Furthermore, the BV5/TBV ratio was inversely associated with the WHO functional classes I–IV (P = 0.004) and positively associated with 6MWD (P = 0.013).
Conclusion
Non-contrast CT measures could quantitatively assess changes in the pulmonary vasculature in response to treatment and were correlated with hemodynamic and clinical parameters.
4.Metformin and statins reduce hepatocellular carcinoma risk in chronic hepatitis C patients with failed antiviral therapy
Pei-Chien TSAI ; Chung-Feng HUANG ; Ming-Lun YEH ; Meng-Hsuan HSIEH ; Hsing-Tao KUO ; Chao-Hung HUNG ; Kuo-Chih TSENG ; Hsueh-Chou LAI ; Cheng-Yuan PENG ; Jing-Houng WANG ; Jyh-Jou CHEN ; Pei-Lun LEE ; Rong-Nan CHIEN ; Chi-Chieh YANG ; Gin-Ho LO ; Jia-Horng KAO ; Chun-Jen LIU ; Chen-Hua LIU ; Sheng-Lei YAN ; Chun-Yen LIN ; Wei-Wen SU ; Cheng-Hsin CHU ; Chih-Jen CHEN ; Shui-Yi TUNG ; Chi‐Ming TAI ; Chih-Wen LIN ; Ching-Chu LO ; Pin-Nan CHENG ; Yen-Cheng CHIU ; Chia-Chi WANG ; Jin-Shiung CHENG ; Wei-Lun TSAI ; Han-Chieh LIN ; Yi-Hsiang HUANG ; Chi-Yi CHEN ; Jee-Fu HUANG ; Chia-Yen DAI ; Wan-Long CHUNG ; Ming-Jong BAIR ; Ming-Lung YU ;
Clinical and Molecular Hepatology 2024;30(3):468-486
Background/Aims:
Chronic hepatitis C (CHC) patients who failed antiviral therapy are at increased risk for hepatocellular carcinoma (HCC). This study assessed the potential role of metformin and statins, medications for diabetes mellitus (DM) and hyperlipidemia (HLP), in reducing HCC risk among these patients.
Methods:
We included CHC patients from the T-COACH study who failed antiviral therapy. We tracked the onset of HCC 1.5 years post-therapy by linking to Taiwan’s cancer registry data from 2003 to 2019. We accounted for death and liver transplantation as competing risks and employed Gray’s cumulative incidence and Cox subdistribution hazards models to analyze HCC development.
Results:
Out of 2,779 patients, 480 (17.3%) developed HCC post-therapy. DM patients not using metformin had a 51% increased risk of HCC compared to non-DM patients, while HLP patients on statins had a 50% reduced risk compared to those without HLP. The 5-year HCC incidence was significantly higher for metformin non-users (16.5%) versus non-DM patients (11.3%; adjusted sub-distribution hazard ratio [aSHR]=1.51; P=0.007) and metformin users (3.1%; aSHR=1.59; P=0.022). Statin use in HLP patients correlated with a lower HCC risk (3.8%) compared to non-HLP patients (12.5%; aSHR=0.50; P<0.001). Notably, the increased HCC risk associated with non-use of metformin was primarily seen in non-cirrhotic patients, whereas statins decreased HCC risk in both cirrhotic and non-cirrhotic patients.
Conclusions
Metformin and statins may have a chemopreventive effect against HCC in CHC patients who failed antiviral therapy. These results support the need for personalized preventive strategies in managing HCC risk.
5.Sofosbuvir/velpatasvir plus ribavirin for Child-Pugh B and Child-Pugh C hepatitis C virus-related cirrhosis
Chen-Hua LIU ; Chi-Yi CHEN ; Wei-Wen SU ; Chun-Jen LIU ; Ching-Chu LO ; Ke-Jhang HUANG ; Jyh-Jou CHEN ; Kuo-Chih TSENG ; Chi-Yang CHANG ; Cheng-Yuan PENG ; Yu-Lueng SHIH ; Chia-Sheng HUANG ; Wei-Yu KAO ; Sheng-Shun YANG ; Ming-Chang TSAI ; Jo-Hsuan WU ; Po-Yueh CHEN ; Pei-Yuan SU ; Jow-Jyh HWANG ; Yu-Jen FANG ; Pei-Lun LEE ; Chi-Wei TSENG ; Fu-Jen LEE ; Hsueh-Chou LAI ; Tsai-Yuan HSIEH ; Chun-Chao CHANG ; Chung-Hsin CHANG ; Yi-Jie HUANG ; Jia-Horng KAO
Clinical and Molecular Hepatology 2021;27(4):575-588
Background/Aims:
Real-world studies assessing the effectiveness and safety of sofosbuvir/velpatasvir (SOF/VEL) plus ribavirin (RBV) for Child-Pugh B/C hepatitis C virus (HCV)-related cirrhosis are limited.
Methods:
We included 107 patients with Child-Pugh B/C HCV-related cirrhosis receiving SOF/VEL plus RBV for 12 weeks in Taiwan. The sustained virologic response rates at off-treatment week 12 (SVR12) for the evaluable population (EP), modified EP, and per-protocol population (PP) were assessed. Thesafety profiles were reported.
Results:
The SVR12 rates in the EP, modified EP and PP were 89.7% (95% confidence interval [CI], 82.5–94.2%), 94.1% (95% CI, 87.8–97.3%), and 100% (95% CI, 96.2–100%). Number of patients who failed to achieve SVR12 were attributed to virologic failures. The SVR12 rates were comparable regardless of patient characteristics. One patient discontinued treatment because of adverse events (AEs). Twenty-four patients had serious AEs and six died, but none were related to SOF/VEL or RBV. Among the 96 patients achieving SVR12, 84.4% and 64.6% had improved Child-Pugh and model for endstage liver disease (MELD) scores. Multivariate analysis revealed that a baseline MELD score ≥15 was associated with an improved MELD score of ≥3 (odds ratio, 4.13; 95% CI, 1.16–14.71; P=0.02). Patients with chronic kidney disease (CKD) stage 1 had more significant estimated glomerular filtration rate declines than patients with CKD stage 2 (-0.42 mL/min/1.73 m2/month; P=0.01) or stage 3 (-0.56 mL/min/1.73 m2/month; P<0.001).
Conclusions
SOF/VEL plus RBV for 12 weeks is efficacious and well-tolerated for Child-Pugh B/C HCV-related cirrhosis.
6.Sofosbuvir/velpatasvir plus ribavirin for Child-Pugh B and Child-Pugh C hepatitis C virus-related cirrhosis
Chen-Hua LIU ; Chi-Yi CHEN ; Wei-Wen SU ; Chun-Jen LIU ; Ching-Chu LO ; Ke-Jhang HUANG ; Jyh-Jou CHEN ; Kuo-Chih TSENG ; Chi-Yang CHANG ; Cheng-Yuan PENG ; Yu-Lueng SHIH ; Chia-Sheng HUANG ; Wei-Yu KAO ; Sheng-Shun YANG ; Ming-Chang TSAI ; Jo-Hsuan WU ; Po-Yueh CHEN ; Pei-Yuan SU ; Jow-Jyh HWANG ; Yu-Jen FANG ; Pei-Lun LEE ; Chi-Wei TSENG ; Fu-Jen LEE ; Hsueh-Chou LAI ; Tsai-Yuan HSIEH ; Chun-Chao CHANG ; Chung-Hsin CHANG ; Yi-Jie HUANG ; Jia-Horng KAO
Clinical and Molecular Hepatology 2021;27(4):575-588
Background/Aims:
Real-world studies assessing the effectiveness and safety of sofosbuvir/velpatasvir (SOF/VEL) plus ribavirin (RBV) for Child-Pugh B/C hepatitis C virus (HCV)-related cirrhosis are limited.
Methods:
We included 107 patients with Child-Pugh B/C HCV-related cirrhosis receiving SOF/VEL plus RBV for 12 weeks in Taiwan. The sustained virologic response rates at off-treatment week 12 (SVR12) for the evaluable population (EP), modified EP, and per-protocol population (PP) were assessed. Thesafety profiles were reported.
Results:
The SVR12 rates in the EP, modified EP and PP were 89.7% (95% confidence interval [CI], 82.5–94.2%), 94.1% (95% CI, 87.8–97.3%), and 100% (95% CI, 96.2–100%). Number of patients who failed to achieve SVR12 were attributed to virologic failures. The SVR12 rates were comparable regardless of patient characteristics. One patient discontinued treatment because of adverse events (AEs). Twenty-four patients had serious AEs and six died, but none were related to SOF/VEL or RBV. Among the 96 patients achieving SVR12, 84.4% and 64.6% had improved Child-Pugh and model for endstage liver disease (MELD) scores. Multivariate analysis revealed that a baseline MELD score ≥15 was associated with an improved MELD score of ≥3 (odds ratio, 4.13; 95% CI, 1.16–14.71; P=0.02). Patients with chronic kidney disease (CKD) stage 1 had more significant estimated glomerular filtration rate declines than patients with CKD stage 2 (-0.42 mL/min/1.73 m2/month; P=0.01) or stage 3 (-0.56 mL/min/1.73 m2/month; P<0.001).
Conclusions
SOF/VEL plus RBV for 12 weeks is efficacious and well-tolerated for Child-Pugh B/C HCV-related cirrhosis.
7.Artificial intelligence predicts direct-acting antivirals failure among hepatitis C virus patients: A nationwide hepatitis C virus registry program
Ming-Ying LU ; Chung-Feng HUANG ; Chao-Hung HUNG ; Chi‐Ming TAI ; Lein-Ray MO ; Hsing-Tao KUO ; Kuo-Chih TSENG ; Ching-Chu LO ; Ming-Jong BAIR ; Szu-Jen WANG ; Jee-Fu HUANG ; Ming-Lun YEH ; Chun-Ting CHEN ; Ming-Chang TSAI ; Chien-Wei HUANG ; Pei-Lun LEE ; Tzeng-Hue YANG ; Yi-Hsiang HUANG ; Lee-Won CHONG ; Chien-Lin CHEN ; Chi-Chieh YANG ; Sheng‐Shun YANG ; Pin-Nan CHENG ; Tsai-Yuan HSIEH ; Jui-Ting HU ; Wen-Chih WU ; Chien-Yu CHENG ; Guei-Ying CHEN ; Guo-Xiong ZHOU ; Wei-Lun TSAI ; Chien-Neng KAO ; Chih-Lang LIN ; Chia-Chi WANG ; Ta-Ya LIN ; Chih‐Lin LIN ; Wei-Wen SU ; Tzong-Hsi LEE ; Te-Sheng CHANG ; Chun-Jen LIU ; Chia-Yen DAI ; Jia-Horng KAO ; Han-Chieh LIN ; Wan-Long CHUANG ; Cheng-Yuan PENG ; Chun-Wei- TSAI ; Chi-Yi CHEN ; Ming-Lung YU ;
Clinical and Molecular Hepatology 2024;30(1):64-79
Background/Aims:
Despite the high efficacy of direct-acting antivirals (DAAs), approximately 1–3% of hepatitis C virus (HCV) patients fail to achieve a sustained virological response. We conducted a nationwide study to investigate risk factors associated with DAA treatment failure. Machine-learning algorithms have been applied to discriminate subjects who may fail to respond to DAA therapy.
Methods:
We analyzed the Taiwan HCV Registry Program database to explore predictors of DAA failure in HCV patients. Fifty-five host and virological features were assessed using multivariate logistic regression, decision tree, random forest, eXtreme Gradient Boosting (XGBoost), and artificial neural network. The primary outcome was undetectable HCV RNA at 12 weeks after the end of treatment.
Results:
The training (n=23,955) and validation (n=10,346) datasets had similar baseline demographics, with an overall DAA failure rate of 1.6% (n=538). Multivariate logistic regression analysis revealed that liver cirrhosis, hepatocellular carcinoma, poor DAA adherence, and higher hemoglobin A1c were significantly associated with virological failure. XGBoost outperformed the other algorithms and logistic regression models, with an area under the receiver operating characteristic curve of 1.000 in the training dataset and 0.803 in the validation dataset. The top five predictors of treatment failure were HCV RNA, body mass index, α-fetoprotein, platelets, and FIB-4 index. The accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of the XGBoost model (cutoff value=0.5) were 99.5%, 69.7%, 99.9%, 97.4%, and 99.5%, respectively, for the entire dataset.
Conclusions
Machine learning algorithms effectively provide risk stratification for DAA failure and additional information on the factors associated with DAA failure.