1.Role of Innate Trained Immunity in Diseases
Chuang CHENG ; Yue-Qing WANG ; Xiao-Qin MU ; Xi ZHENG ; Jing HE ; Jun WANG ; Chao TAN ; Xiao-Wen LIU ; Li-Li ZOU
Progress in Biochemistry and Biophysics 2025;52(1):119-132
The innate immune system can be boosted in response to subsequent triggers by pre-exposure to microbes or microbial products, known as “trained immunity”. Compared to classical immune memory, innate trained immunity has several different features. Firstly, the molecules involved in trained immunity differ from those involved in classical immune memory. Innate trained immunity mainly involves innate immune cells (e.g., myeloid immune cells, natural killer cells, innate lymphoid cells) and their effector molecules (e.g., pattern recognition receptor (PRR), various cytokines), as well as some kinds of non-immune cells (e.g., microglial cells). Secondly, the increased responsiveness to secondary stimuli during innate trained immunity is not specific to a particular pathogen, but influences epigenetic reprogramming in the cell through signaling pathways, leading to the sustained changes in genes transcriptional process, which ultimately affects cellular physiology without permanent genetic changes (e.g., mutations or recombination). Finally, innate trained immunity relies on an altered functional state of innate immune cells that could persist for weeks to months after initial stimulus removal. An appropriate inducer could induce trained immunity in innate lymphocytes, such as exogenous stimulants (including vaccines) and endogenous stimulants, which was firstly discovered in bone marrow derived immune cells. However, mature bone marrow derived immune cells are short-lived cells, that may not be able to transmit memory phenotypes to their offspring and provide long-term protection. Therefore, trained immunity is more likely to be relied on long-lived cells, such as epithelial stem cells, mesenchymal stromal cells and non-immune cells such as fibroblasts. Epigenetic reprogramming is one of the key molecular mechanisms that induces trained immunity, including DNA modifications, non-coding RNAs, histone modifications and chromatin remodeling. In addition to epigenetic reprogramming, different cellular metabolic pathways are involved in the regulation of innate trained immunity, including aerobic glycolysis, glutamine catabolism, cholesterol metabolism and fatty acid synthesis, through a series of intracellular cascade responses triggered by the recognition of PRR specific ligands. In the view of evolutionary, trained immunity is beneficial in enhancing protection against secondary infections with an induction in the evolutionary protective process against infections. Therefore, innate trained immunity plays an important role in therapy against diseases such as tumors and infections, which has signature therapeutic effects in these diseases. In organ transplantation, trained immunity has been associated with acute rejection, which prolongs the survival of allografts. However, trained immunity is not always protective but pathological in some cases, and dysregulated trained immunity contributes to the development of inflammatory and autoimmune diseases. Trained immunity provides a novel form of immune memory, but when inappropriately activated, may lead to an attack on tissues, causing autoinflammation. In autoimmune diseases such as rheumatoid arthritis and atherosclerosis, trained immunity may lead to enhance inflammation and tissue lesion in diseased regions. In Alzheimer’s disease and Parkinson’s disease, trained immunity may lead to over-activation of microglial cells, triggering neuroinflammation even nerve injury. This paper summarizes the basis and mechanisms of innate trained immunity, including the different cell types involved, the impacts on diseases and the effects as a therapeutic strategy to provide novel ideas for different diseases.
2.Prevalence of Schistosoma japonicum infections in wild rodents in key areas during the elimination phase
Chao LÜ ; Xiaojuan XU ; Jiajia LI ; Ting FENG ; Hai ZHU ; Yifeng LI ; Ling XU ; Zhihong FENG ; Huiwen JIANG ; Xiaoqing ZOU ; Wenjun WEI ; Zhiqiang QIN ; Yang HONG ; Shiqing ZHANG ; Jing XU
Chinese Journal of Schistosomiasis Control 2025;37(5):475-481
Objective To investigate the prevalence of Schistosoma japonicum infections in wild rodents in schistosomiasis-endemic areas of China, so as to provide insights into formulation of technical guidelines for monitoring of and the precise control strategy for S. japonicum infections in wild rodents during the elimination phase. Methods Two administrative villages where schistosomiasis was historically highly prevalent were selected each from Dongzhi County, Anhui Province, and Duchang County, Jiangxi Province as study villages. Wild rodents were captured from study villages with baited traps or cages at night in June and September, 2021. The number of rodents captured was recorded, and the rodent species was characterized based on morphologi-cal characteristics. Liver tissues were sampled from captured rodents for macroscopical observation of the presence of egg granu- lomas, and S. japonicum infection was detected simultaneously using liver tissue homogenate microscopy, examinations of mesenteric tissues for parasites, and modified Kato-Katz thick smear technique (Kato-Katz technique). A positive S. japonicum infection was defined as detection of S. japonicum eggs or adult worms by any of these methods. The rate of wild rodent capture and prevalence of S. japonicum infections in wild rodents were compared in different study villages and at different time periods, and the detection of S. japonicum infections in wild rodents was compared by different assays. Results The overall rate of wild ro- dent capture was 8.28% (237/2 861) in Dongzhi County, and the wild rodent capture rates were 9.24% (133/1 439) and 7.31% (104/1 422) in two study villages (χ2 = 3.503, P = 0.061), and were 8.59% (121/1 409) and 7.99% (116/1 452) in June and September, 2021, respectively (χ2 = 0.337, P = 0.561). The overall rate of wild rodent capture was 3.72% (77/2 072) in Duchang County, and the wild rodent capture rates were 6.91% (67/970) and 0.91% (10/1 102) in two study villages (χ2 = 51.901, P < 0.001), and were 4.13% (39/945) and 3.37% (38/1 127) in June and September, 2021, respectively (χ2 = 0.815, P = 0.365). Rattus norvegicus was the predominant rodent species captured in both counties, accounting for 70.04% (166/237) of all captured wild rodents in Dongzhi County and 88.31% (68/77) in Duchang County. No S. japonicum infection was detected in wild rodents captured in Duchang County. Nevertheless, the overall prevalence of S. japonicum infections was 51.05% (121/237) in wild rodents captured in Dongzhi County, with prevalence rates of 50.38% (67/133) and 51.92% (54/104) in two study villages (χ2 = 0.098, P = 0.755), and 54.31% (63/116) and 47.93% (58/121) in September and June, 2021, respectively (χ2 = 0.964, P = 0.326). Of 237 wild rodents captured in Dongzhi County, there were 140 (59.07%) rodents with visible hepatic egg granulomas, 117 (49.47%) tested positive for S. japonicum eggs by liver tissue homogenate microscopy, 34 (14.35%) tested positive for S. japonicum eggs with Kato-Katz technique; however, no adult S. japonicum worms were detected in mesenteric tissues. In addition, hepatic egg granulomas were found in all wild rodents tested positive for S. japonicum eggs with liver tissue homogenate microscopy. Conclusions The rate of wild rodent capture and prevalence of S. japonicum infection in wild rodents vary greatly in schistosomiasis-endemic areas of China, and the prevalence of S. japonicum infection is slightly higher in wild rodents captured in autumn than in summer. Liver tissue is recommended as the preferred sample for surveillance of S. japonicum infection in wild rodents, and a combination of macroscopical observation of hepatic egg granulomas and liver tissue homogenate microscopy may be a standard method for surveillance of S. japonicum infection in wild rodents.
3.Avatrombopag for platelet engraftment after allogeneic hematopoietic stem cell transplantation in children: a retrospective clinical study.
Xin WANG ; Yuan-Yuan REN ; Xia CHEN ; Chao-Qian JIANG ; Ran-Ran ZHANG ; Xiao-Yan ZHANG ; Li-Peng LIU ; Yu-Mei CHEN ; Li ZHANG ; Yao ZOU ; Fang LIU ; Xiao-Juan CHEN ; Wen-Yu YANG ; Xiao-Fan ZHU ; Ye GUO
Chinese Journal of Contemporary Pediatrics 2025;27(10):1233-1239
OBJECTIVES:
To evaluate the efficacy and safety of avatrombopag in promoting platelet engraftment after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in children, compared with recombinant human thrombopoietin (rhTPO).
METHODS:
A retrospective analysis was conducted on 53 pediatric patients who underwent allo-HSCT at the Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences from April 2023 to August 2024. Based on medications used during the periengraftment period, patients were divided into two groups: the avatrombopag group (n=15) and the rhTPO group (n=38).
RESULTS:
At days 14, 30, and 60 post-transplant, platelet engraftment was achieved in 20% (3/15), 60% (9/15), and 93% (14/15) of patients in the avatrombopag group, and in 39% (15/38), 82% (31/38), and 97% (37/38) in the rhTPO group, respectively. There were no significant differences between the two groups in platelet engraftment rates at each time point, cumulative incidence of platelet engraftment, overall survival, and relapse-free survival (all P>0.05). Multivariable Cox proportional hazards analysis indicated that acute graft-versus-host disease was an independent risk factor for delayed platelet engraftment (P=0.043).
CONCLUSIONS
In children undergoing allo-HSCT, avatrombopag effectively promotes platelet engraftment, with efficacy and safety comparable to rhTPO, and represents a viable therapeutic option.
Humans
;
Retrospective Studies
;
Hematopoietic Stem Cell Transplantation/adverse effects*
;
Male
;
Female
;
Child
;
Child, Preschool
;
Infant
;
Adolescent
;
Transplantation, Homologous
;
Blood Platelets/drug effects*
;
Thiazoles/therapeutic use*
;
Thrombopoietin/therapeutic use*
;
Thiophenes
4.Research and Therapeutic Advances of 26S Proteasome Subunit in Non-small Cell Lung Cancer.
Chenrui MOU ; Shaotong ZOU ; Chao REN ; Zihan YI ; Jianlin SHI
Chinese Journal of Lung Cancer 2025;28(5):363-370
Lung cancer is one of the most common cancers worldwide and is the leading cause of cancer deaths. Lung adenocarcinoma is the most common type of lung cancer. Due to the lack of effective biomarkers and therapeutic targets in the proliferation and metastasis of lung adenocarcinoma, the overall treatment of lung adenocarcinoma is not optimistic. Therefore, there is a need to find new ideas and methods for lung adenocarcinoma treatment. The 26S proteasome is a multiprotein complex responsible for degrading misfolded proteins and maintaining intracellular protein homeostasis. During the development of non-small cell lung cancer (NSCLC), the regulatory granule subunit of the 26S proteasome promotes the malignant progression of tumours by regulating tumour-associated proteins, immune cells, and related signalling pathways. The proteasome core particle is a key subunit for degrading proteins, and its inhibitors have shown promising anti-tumour effects when combined with conventional chemotherapeutic agents. However, limited by toxic side effects and tumour heterogeneity, targeted inhibitors against the 26S proteasome are still not widely used in NSCLC treatment. This article reviews the mechanism of action and related therapeutic research of 26S proteasome regulatory particle subunits and core particle subunits in NSCLC, and explores the potential of these inhibitors in clinical application.
.
Humans
;
Proteasome Endopeptidase Complex/chemistry*
;
Carcinoma, Non-Small-Cell Lung/genetics*
;
Lung Neoplasms/genetics*
;
Animals
;
Proteasome Inhibitors/therapeutic use*
;
Antineoplastic Agents/therapeutic use*
5.Risk factors and mortality for carbapenem-resistant Acinetobacter baumannii bloodstream infection in elderly patients:a 10-year retrospective study
Ye XUE ; Chao-Shi ZOU ; Tai-Jie LI ; Mei-Xiang QIN ; Chan LIANG ; Kang-Hai LIU ; Dan-Ping QIU
Chinese Journal of Infection Control 2024;23(2):155-161
Objective To assess the risk factors for carbapenem-resistant Acinetobacter baumannii(CRAB)bloodstream infection(BSI)and 28-day short-term mortality in elderly patients,and provide reference for the pre-vention and treatment of CRAB BSI.Methods Clinical data of patients aged ≥60 years and diagnosed with AB BSI in a hospital in Yulin City from January 2013 to December 2022 were retrospectively analyzed,including demogra-phic and microbiological characteristics,as well as clinical outcomes of the patients.Variables which were significant in univariate analysis were selected for multivariate analysis using binary logistic regression model and Cox propor-tional hazards model.Independent risk factors for infection were further determined,and survival analysis was per-formed using Kaplan-Meier curve.Results A total of 150 patients were included in the study,out of which 16 pa-tients(10.7%)had CRAB BSI and 134 had carbapenem-sensitive AB(CSAB)BSI.The 28-day short-term mortali-ty of AB BSI in elderly patients was 15.3%(23/150,95%CI:9.6%-21.1%),and the short-term mortality of CRAB BSI was higher than that of CSAB([56.3%,9/16]vs[10.4%,14/134]).Deep venous catheterization(OR:15.598,95%CI:1.831-132.910)and combined infections of other sites(OR:15.449,95%CI:1.497-159.489)were related to CRAB BSI in elderly patients.The independent risk factors for 28-day mortality in elderly patients with AB BSI were hemodialysis(OR:11.856,95%CI:2.924-48.076),intensive care unit admission(OR:9.387,95%CI:1.941-45.385),and pulmonary infection being suspected source of bacteremia(OR:7.019,95%CI:1.345-36.635).Conclusion The occurrence of CRAB BSI in elderly patients is related to the combined infection of other sites and deep vein catheterization.Hemodialysis,admission to ICU,and pulmonary infection being suspected source of bacteremia are independent risk factors for the prognosis of AB BSI in elderly patients.
6.Exploration and practice of the course of Geriatric Nursing: taking Peking Union Medical College as an example
Haiou ZOU ; Xiaopeng HUO ; Chao SUN ; Xiaoxue LI ; Aimin GUO
Chinese Journal of Medical Education Research 2024;23(2):151-155
The Peking Union Medical College School of Nursing has been dedicated to exploring the education of undergraduate students specializing in geriatric nursing since 2016. Through seven years of exploration and practice, aiming at the pain points and difficulties in the process of cultivating geriatric nursing students, the teaching team has developed a progressive and modular curriculum system, with the goal of training geriatric nursing professionals with specialized knowledge and practical innovation abilities, on the platform of a seamless teaching practice base connecting settings from laboratory to community/elderly care institutions/hospital to society, with an emphasis on the integration of ideological and political education with geriatric nursing education. Moreover, a specialized faculty team has been established. This course serves as a model for nurturing excellent nursing professionals possessing the right values and outlook on life as well as ability to cope with the national challenges posed by aging populations.
7.5.0T MRI for quantifying proton density fat fraction of liver
Jianxian LIU ; Zhensong WANG ; Xin WANG ; Ning TIAN ; Peng CHEN ; Dan YU ; Yanxing YANG ; Chuanli CHENG ; Chao ZOU ; Jie GAN
Chinese Journal of Medical Imaging Technology 2024;40(5):671-676
Objective To observe the value of 5.0T MRI for quantifying proton density fat fraction(PDFF)of liver.Methods Liver chemical shift encoded(CSE)MR scanning were prospectively performed using 5.0T,3.0T and 1.5T scanner in 30 volunteers,respectively,and CSE-PDFF were measured.Then MR spectroscopy(MRS)were performed using 5.0T and 1.5T scanner,respectively,and MRS-PDFF were also measured.The consistency of liver PDFF measured on different images was observed,and the value of 5.0T MRI for liver PDFF was analyzed.Results The overall consistencies of liver CSE-PDFF measured with 5.0T,3.0T and 1.5T MR scanner were all good(all ICC>0.75,all P<0.001).The consistency of liver CSE-PDFF based on 5.0T and 3.0T,1.5T MR scanner were both good(ICC=0.989,0.992,both P<0.001).The overall consistencies of CSE-PDFF based on 5.0T MR and MRS-PDFF based on 5.0T and 1.5T MR were both good(both ICC>0.75,both P<0.001).CSE-PDFF had good consistency with MRS-PDFF based on same 5.0T MR scanner(ICC=0.988,P<0.001),and CSE-PDFF based on 5.0T had good consistency with MRS-PDFF based on 1.5T MR scanner(ICC=0.978,P<0.001).Conclusion 5.0T MRI had high value for quantifying liver PDFF.
8.Consistency of 5.0T and 1.5T MR spectroscopy for quantitating proton density fat fraction of liver
Jianxian LIU ; Zhensong WANG ; Zhengyi LI ; Xin WANG ; Dan YU ; Yanxing YANG ; Chuanli CHENG ; Chao ZOU ; Shuo CHEN ; Jie GAN
Chinese Journal of Medical Imaging Technology 2024;40(5):677-681
Objective To observe the consistency of 5.0T and 1.5T MR spectroscopy(MRS)for quantitating proton density fat fraction(PDFF)of liver.Methods Lipid emulsion models with lipid content of 0,5%,10%,15%,20%,25%and 30%were prepared.1H-MRS were collected using 5.0T and 1.5T MR scanners,respectively,and PDFF were obtained with jMRUI software.Totally 23 people,including 11 cases of fatty liver and 12 healthy adults were prospectively collected,and volume of interest(VOI)in the liver were selected to acquire 1H-MRS,and PDFF were obtained with jMRUI software and corresponding workstation,respectively.The consistencies of PDFF measured with different methods were analyzed.Results PDFF of lipid emulsion models with lipid content of 0,5%,10%,15%,20%,25%and 30%measured with jMRUI software and workstations based on 5.0T and 1.5T 1H-MRS all had good consistencies and being positively correlated,so were PDFF of liver tissue measured with jMRUI software and workstations based on 5.0T and 1.5T 1H-MRS.Conclusion 5.0T and 1.5T 1H-MRS had good consistency for quantitating liver PDFF.Measuring liver PDFF with workstation in clinical practice was helpful to simplifying workflow.
9.Bidirectional relationship between type 2 diabetes mellitus and coronary artery disease: Prospective cohort study and genetic analyses
Wenqiang ZHANG ; Li ZHANG ; Chenghan XIAO ; Xueyao WU ; Huijie CUI ; Chao YANG ; Peijing YAN ; Mingshuang TANG ; Yutong WANG ; Lin CHEN ; Yunjie LIU ; Yanqiu ZOU ; Ling ZHANG ; Chunxia YANG ; Yuqin YAO ; Jiayuan LI ; Zhenmi LIU ; Xia JIANG ; Ben ZHANG
Chinese Medical Journal 2024;137(5):577-587
Background::While type 2 diabetes mellitus (T2DM) is considered a putative causal risk factor for coronary artery disease (CAD), the intrinsic link underlying T2DM and CAD is not fully understood. We aimed to highlight the importance of integrated care targeting both diseases by investigating the phenotypic and genetic relationships between T2DM and CAD.Methods::We evaluated phenotypic associations using data from the United Kingdom Biobank ( N = 472,050). We investigated genetic relationships by leveraging genomic data conducted in European ancestry for T2DM, with and without adjustment for body mass index (BMI) (T2DM: Ncase/ Ncontrol = 74,124/824,006; T2DM adjusted for BMI [T2DM adjBMI]: Ncase/ Ncontrol = 50,409/523,897) and for CAD ( Ncase/ Ncontrol = 181,522/984,168). We performed additional analyses using genomic data conducted in multiancestry individuals for T2DM ( Ncase/ Ncontrol = 180,834/1,159,055). Results::Observational analysis suggested a bidirectional relationship between T2DM and CAD (T2DM→CAD: hazard ratio [HR] = 2.12, 95% confidence interval [CI]: 2.01–2.24; CAD→T2DM: HR = 1.72, 95% CI: 1.63–1.81). A positive overall genetic correlation between T2DM and CAD was observed ( rg = 0.39, P = 1.43 × 10 -75), which was largely independent of BMI (T2DM adjBMI–CAD: rg = 0.31, P = 1.20 × 10 –36). This was corroborated by six local signals, among which 9p21.3 showed the strongest genetic correlation. Cross-trait meta-analysis replicated 101 previously reported loci and discovered six novel pleiotropic loci. Mendelian randomization analysis supported a bidirectional causal relationship (T2DM→CAD: odds ratio [OR] = 1.13, 95% CI: 1.11-1.16; CAD→T2DM: OR = 1.12, 95% CI: 1.07-1.18), which was confirmed in multiancestry individuals (T2DM→CAD: OR = 1.13, 95% CI: 1.10-1.16; CAD→T2DM: OR = 1.08, 95% CI: 1.04-1.13). This bidirectional relationship was significantly mediated by systolic blood pressure and intake of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, with mediation proportions of 54.1% (95% CI: 24.9-83.4%) and 90.4% (95% CI: 29.3-151.5%), respectively. Conclusion::Our observational and genetic analyses demonstrated an intrinsic bidirectional relationship between T2DM and CAD and clarified the biological mechanisms underlying this relationship.
10.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.

Result Analysis
Print
Save
E-mail