1.The mechanism of Prim-O-glucosylcimifugin in improving cholesterol metabolism in osteoarthritis chondrocytes via lncRNA NEAT1/miR-128-3p
Yanming LIN ; Haishui TU ; Shujie LAN ; Chao LI ; Shiyu LU ; Yue CHEN ; Changlong FU
Journal of Beijing University of Traditional Chinese Medicine 2025;48(1):55-67
Objective:
To investigate the mechanism of action of Prim-O-glucosylcimifugin (POG) to improve cholesterol metabolism in osteoarthritic (OA) chondrocytes based on the long noncoding RNA nuclear-enriched transcript 1 (lncRNA NEAT1)/microRNA-128-3p (miR-128-3p) pathway.
Methods:
For in vivo experiments, 60 mice were divided into the normal, sham operation, model, and POG groups using the random number table method, with 15 mice per group. The osteoarthritis mouse model was constructed using the modified Hulth method in the model and POG groups. Mice in the POG group were administered 30 mg/(kg·d)POG by gavage. The other groups were administered an equal amount of normal saline for 8 weeks. The cartilage tissue structure of mice in each group was observed using hematoxylin and eosin staining. Real-time PCR was used to detect changes in the lncRNA NEAT1 and miR-128-3p mRNA expression levels in the cartilage tissues of mice. Western blotting was used to detect the protein expressions of ATP-binding cassette transporter A1 (ABCA1), liver X receptor β (LXRβ), matrix metalloprotein-3 (MMP-3), and B-lymphoblastoma-2-associated X protein (Bax) in articular cartilage of mice. An enzyme-linked immunosorbent assay was used to measure the tumor necrosis factor-α (TNF-α) content in the synovial fluid of mice. A biochemical microplate assay was used to measure the total cholesterol level in the synovial fluid of mice. The in vitro experiments were divided into the negative control, interleukin-1β(IL-1β), IL-1β+ POG, IL-1β+ oe-lncRNA NEAT1, IL-1β+ oe-lncRNA NEAT1 + POG, IL-1β + miR-128-3p inhibition, and IL-1β+ miR-128-3p inhibition+ POG groups. An OA model was established by inducing chondrocytes with IL-1β for 24 h, and 90 mg/L of POG and miR-128-3p inhibitor(50 nmol/L) were administered for 48 h as an intervention. lncRNA NEAT1 expression in chondrocytes was detected using fluorescence in situ hybridization. A dual luciferase assay was used to detect the targeting relationship between lncRNA NEAT1 and miR-128-3p. Lentiviral plasmids overexpressing lncRNA NEAT1 were used to transfect mouse chondrocytes. Real-time PCR was used to detect the effect of lncRNA NEAT1 overexpression on the mRNA level of miR-128-3p in chondrocytes. Western blotting was used to detect ABCA1, LXRβ, MMP-3, and Bax protein expression in chondrocytes after lncRNA NEAT1 overexpression and miR-128-3p inhibition.
Results:
POG significantly reduced OA cartilage tissue damage. Compared with the model group, the lncRNA NEAT1 mRNA level decreased, whereas the miR-128-3p mRNA level increased in the cartilage tissue of the POG group (P<0.05). Compared with the model group, ABCA1 and LXRβ protein expression increased in the POG group, whereas MMP-3 and Bax protein expression decreased (P<0.05). The TNF-α levels decreased in the POG group compared to the model group (P<0.05). Compared with the model group, the total cholesterol level in the synovial fluid of the joint of mice in the POG group decreased (P<0.05). The mean fluorescence intensity of lncRNA NEAT1 in the IL-1β+ POG group decreased compared with the IL-1β group (P<0.05). The relative luciferase activity in the miR-128-3p mimics group bound to the lncRNA NEAT1-WT plasmid decreased compared with the miR-128-3p negative control group (P<0.05). The lncRNA NEAT1 mRNA levels decreased, whereas the miR-128-3p mRNA levels increased in the IL-1β+ oe-lncRNA NEAT1 + POG group compared with the IL-1β+ oe-lncRNA NEAT1 group (P<0.05). Compared with the IL-1β+ POG group, ABCA1 and LXRβ protein expression decreased, whereas MMP-3 and Bax protein expression increased (P<0.05).
Conclusion
POG mediates lncRNA NEAT1/miR-128-3p to improve cholesterol metabolism in OA chondrocytes.
2.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
3.YTHDF1 regulation of Fis1 on the activation and proliferation and migration ability of hepatic stellate cells
Lin Jia ; Feng Sun ; Qiqi Dong ; Jingjing Yang ; Renpeng Zhou ; Wei Hu ; Chao Lu
Acta Universitatis Medicinalis Anhui 2025;60(1):49-58
Objective:
To explore the effect of YTH domain family protein 1(YTHDF1) on the activation, proliferation and migration of hepatic stellate cells(HSCs) by regulating mitochondrial fission mediated by mitochondrial fission protein 1(Fis1).
Methods:
The mouse hepatic stellate cell line JS-1 was treated with 5 ng/ml TGF-β1 for 24 h to induce its activation and proliferation, andYTHDF1-siRNA was used to construct aYTHDF1silencing model.The experiment was divided into Control group, TGF-β1 group, TGF-β1+si-NC group and TGF-β1+si-YTHDF1 group.Expression changes ofYTHDF1,Fis1and key indicators of fibrosis, type Ⅰ collagen(CollagenⅠ) and α-smooth muscle actin(α-SMA) were detected through reverse transcription quantitative polymerase chain reaction(RT-qPCR) and Western blot; CCK-8 was used to detect cell proliferation ability; Transwell migration assay and cell scratch assay were used to detect cell migration ability; immunofluorescence staining experiment was used to detect the effect ofYTHDF1onFis1-mediated mitochondrial fission; finally, JC-1 staining was used to experimentally detect the effect ofYTHDF1on mitochondrial membrane potential.
Results:
Compared with the Control group, RT-qPCR and Western blot experimental results showed that the expression ofYTHDF1andFis1increased in the TGF-β1 group(P<0.05,P<0.01;P<0.000 1), as well as the fibrosis markersCollagenⅠand the expression level of α-SMA increased(P<0.01;P<0.001,P<0.000 1); while adding CCK-8, the experimental results showed that the proliferation ability of HSCs in the TGF-β1 group was enhanced(P<0.000 1); Transwell experimental results showed that the migration ability of HSCs in the TGF-β1 group was enhanced(P<0.01); the cell scratch experiment results showed that the migration ability of HSCs in the TGF-β1 group was enhanced(P<0.000 1); the immunofluorescence experiment results showed that the TGF-β1 group Mito-Tracker Red staining andFis1co-localization signal increased(P<0.05); JC-1 staining experiment results showed that the mitochondrial membrane potential increased in the TGF-β1 group(P<0.01). Compared with the TGF-β1+si-NC group, RT-qPCR and Western blot experimental results showed that the expression ofYTHDF1andFis1in the TGF-β1+si-YTHDF1 group was reduced(P<0.01;P<0.001), and fibrosis markers the levels ofCollagenⅠandα-SMAwere reduced(P<0.01;P<0.001,P<0.01).CCK-8 experimental results showed that the proliferation ability of HSCs in the TGF-β1+si-YTHDF1 group was weakened(P<0.000 1); Transwell experiment results showed that the migration ability of HSCs in the TGF-β1+si-YTHDF1 group was weakened(P<0.001); cell scratch experiment results showed that the migration ability of HSCs in the TGF-β1+si-YTHDF1 group was weakened(P<0.000 1); immunofluorescence experiment results showed that the Mito-Tracker Red staining andFis1co-localization signal decreased in the TGF-β1+si-YTHDF1 group(P<0.01); JC-1 staining experiment results showed that mitochondrial membrane potential decreased in the TGF-β1+si-YTHDF1 group(P<0.05).
Conclusion
YTHDF1promotes the activation, proliferation and migration capabilities of HSCs by positively regulatingFis1-mediated mitochondrial fission. This suggests thatYTHDF1may be a key gene involved in regulating the activation, proliferation and migration of HSCs.
4.The multi-center mid-term clinical outcomes of combined complete preservation of chordal structure mitral valve replacement with total anatomic complete arterial myocardial revascularization for coronary patients with moderate-to-severe or severe ischemic mitral regurgitation
Ke GUO ; Xujun CHEN ; Baoshi ZHENG ; Chao SHI ; Keli HUANG ; Yong CAO ; Chengquan LIAO ; Jingwei CHEN ; Yu LIN ; Chengxin LIU ; Quansheng CAO ; Lin SHEN ; Zhendong WANG
Chinese Journal of Surgery 2025;63(1):58-67
Objective:To evaluate the clinical outcomes of combined complete preservation of chordal structure mitral valve replacement (C-MVR) with total anatomical arterial myocardial revascularization (TACR) in coronary patients with moderate-to-severe or severe ischemic mitral regurgitation (IMR).Methods:This is a retrospective multi-center case series study. Data were retrospectively collected from 127 patients with coronary artery disease with moderate to severe or severe IMR who received TACR with C-MVR from July 2015 to April 2024 in 13 hospitals in China. There were 90 males and 37 females, aged (56.5±10.7) years (range: 33 to 74 years). Perioperative data and follow-up data including left ventricular ejection fraction, left ventricular end-diastolic diameter, and patency rate of arterial grafts of patients were collected. Comparisons were made using paired sample t-test or χ2 test. Results:In this cohort of 127 patients, 67 underwent concurrent tricuspid valve repair. During surgery, 113 grafts of the left internal mammary artery (LIMA), 127 grafts of the left radial artery, 80 grafts of the right radial artery, and 110 grafts of the right internal mammary artery (RIMA) were harvested. The number of the distal anastomosis was 4.2±0.4 (range: 3 to 5). The aortic cross-clamp time and cardiopulmonary bypass time were (97.5±23.4) minutes (range: 90 to 161 minutes) and (145.4±19.2) minutes (range: 101 to 210 minutes), respectively. There was one operative death. Intraoperative placement of an intra-aortic balloon pump was performed in 21 patients to improve the left ventricular ejection. No sternal ischemic occurred. All patients completed follow-up, with a mean follow-up period of (64.3±7.5) months (range: 4 to 110 months). No major cerebrovascular events occurred during the follow-up period, and all patients survived. Left ventricular ejection fraction improved postoperatively (55.0%±5.3% vs. 41.0%±15.3%, t=17.23, P<0.01). The proportion of patients with New York Heart Association functional class ≤2 increased postoperatively (23.6% (30/127) vs. 87.3% (110/126), χ2=103.77, P<0.01). The proportion of patients with Canadian Cardiovascular Society Angina Classification ≤3 decreased postoperatively (4.8% (6/126) vs. 78.7% (100/127), χ2=142.19, P<0.01). The left ventricular end-diastolic diameter decreased postoperatively ((5.70±4.50) cm vs. (6.10±0.23) cm, t=12.15, P<0.01). Coronary multi-detector computed tomography angiography (MDCTA) follow-up was conducted for (60.5±11.7) months (range: 6 to 109 months) postoperatively. MDCTA confirmed the patency rates of the grafts: 96.4% (108/112) for the LIMA grafts, 88.9% (112/126) for the left radial artery grafts, 93.7% (74/79) for the right radial artery grafts, and 90.9% (100/110) for the free RIMA grafts. No significant differences in graft patency rates were observed between the arterial grafts ( χ2=5.24, P=0.155). Conclusion:The results of this multi-centre study demonstrate satisfactory mid-term results of C-MVR with TACR for the treatment of coronary artery disease with moderate to severe or severe IMR.
5.Guidelines for vaccination of kidney transplant candidates and recipients in China
Jian Zhang ; Jun Lin ; Weijie Zhang ; Xiaoming Ding ; Xiaopeng Hu ; Wujun Xue
Organ Transplantation 2025;16(2):177-190
In order to further standardize the vaccination of kidney transplant candidates and recipients in China, the Branch of Organ Transplantation of Chinese Medical Association has organized experts in kidney transplantation and infectious diseases. Based on the "Vaccination of Solid Organ Transplant Candidates and Recipients: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice", and in combination with the clinical reality of infectious diseases and vaccination after organ transplantation in China, as well as referring to relevant recommendations from home and abroad in recent years, these guidelines are formulated from aspects such as epidemiology, types of vaccines, vaccination principles, target population, and specific vaccine administration. The "Guidelines for Vaccination of Kidney Transplant Candidates and Recipients in China" aims to provide theoretical reference for medical workers in the field of kidney transplantation in China, regarding the vaccination of kidney transplant candidates and recipients. It is expected to better guide the vaccination of kidney transplant candidates and recipients, reduce the risk of postoperative infection, and improve survival outcomes.
6.Predictive Modeling of Symptomatic Intracranial Hemorrhage Following Endovascular Thrombectomy: Insights From the Nationwide TREAT-AIS Registry
Jia-Hung CHEN ; I-Chang SU ; Yueh-Hsun LU ; Yi-Chen HSIEH ; Chih-Hao CHEN ; Chun-Jen LIN ; Yu-Wei CHEN ; Kuan-Hung LIN ; Pi-Shan SUNG ; Chih-Wei TANG ; Hai-Jui CHU ; Chuan-Hsiu FU ; Chao-Liang CHOU ; Cheng-Yu WEI ; Shang-Yih YAN ; Po-Lin CHEN ; Hsu-Ling YEH ; Sheng-Feng SUNG ; Hon-Man LIU ; Ching-Huang LIN ; Meng LEE ; Sung-Chun TANG ; I-Hui LEE ; Lung CHAN ; Li-Ming LIEN ; Hung-Yi CHIOU ; Jiunn-Tay LEE ; Jiann-Shing JENG ;
Journal of Stroke 2025;27(1):85-94
Background:
and Purpose Symptomatic intracranial hemorrhage (sICH) following endovascular thrombectomy (EVT) is a severe complication associated with adverse functional outcomes and increased mortality rates. Currently, a reliable predictive model for sICH risk after EVT is lacking.
Methods:
This study used data from patients aged ≥20 years who underwent EVT for anterior circulation stroke from the nationwide Taiwan Registry of Endovascular Thrombectomy for Acute Ischemic Stroke (TREAT-AIS). A predictive model including factors associated with an increased risk of sICH after EVT was developed to differentiate between patients with and without sICH. This model was compared existing predictive models using nationwide registry data to evaluate its relative performance.
Results:
Of the 2,507 identified patients, 158 developed sICH after EVT. Factors such as diastolic blood pressure, Alberta Stroke Program Early CT Score, platelet count, glucose level, collateral score, and successful reperfusion were associated with the risk of sICH after EVT. The TREAT-AIS score demonstrated acceptable predictive accuracy (area under the curve [AUC]=0.694), with higher scores being associated with an increased risk of sICH (odds ratio=2.01 per score increase, 95% confidence interval=1.64–2.45, P<0.001). The discriminatory capacity of the score was similar in patients with symptom onset beyond 6 hours (AUC=0.705). Compared to existing models, the TREAT-AIS score consistently exhibited superior predictive accuracy, although this difference was marginal.
Conclusions
The TREAT-AIS score outperformed existing models, and demonstrated an acceptable discriminatory capacity for distinguishing patients according to sICH risk levels. However, the differences between models were only marginal. Further research incorporating periprocedural and postprocedural factors is required to improve the predictive accuracy.
7.Longitudinal Association of Changes in Metabolic Syndrome with Cognitive Function: 12-Year Follow-up of the Guangzhou Biobank Cohort Study
Yu Meng TIAN ; Wei Sen ZHANG ; Chao Qiang JIANG ; Feng ZHU ; Ya Li JIN ; Shiu Lun Au YEUNG ; Jiao WANG ; Kar Keung CHENG ; Tai Hing LAM ; Lin XU
Diabetes & Metabolism Journal 2025;49(1):60-79
Background:
The association of changes in metabolic syndrome (MetS) with cognitive function remains unclear. We explored this association using prospective and Mendelian randomization (MR) studies.
Methods:
MetS components including high-density lipoprotein cholesterol (HDL-C), systolic blood pressure (SBP), waist circumference (WC), fasting plasma glucose (FPG), and triglycerides were measured at baseline and two follow-ups, constructing a MetS index. Immediate, delayed memory recall, and cognitive function along with its dimensions were assessed by immediate 10- word recall test (IWRT) and delayed 10-word recall test (DWRT), and mini-mental state examination (MMSE), respectively, at baseline and follow-ups. Linear mixed-effect model was used. Additionally, the genome-wide association study (GWAS) of MetS was conducted and one-sample MR was performed to assess the causality between MetS and cognitive function.
Results:
Elevated MetS index was associated with decreasing annual change rates (decrease) in DWRT and MMSE scores, and with decreases in attention, calculation and recall dimensions. HDL-C was positively associated with an increase in DWRT scores, while SBP and FPG were negatively associated. HDL-C showed a positive association, whereas WC was negatively associated with increases in MMSE scores, including attention, calculation and recall dimensions. Interaction analysis indicated that the association of MetS index on cognitive decline was predominantly observed in low family income group. The GWAS of MetS identified some genetic variants. MR results showed a non-significant causality between MetS and decrease in DWRT, IWRT, nor MMSE scores.
Conclusion
Our study indicated a significant association of MetS and its components with declines in memory and cognitive function, especially in delayed memory recall.
8.Impact of iron-deficiency anemia on short-term outcomes after resection of colorectal cancer liver metastasis: a US National (Nationwide) Inpatient Sample (NIS) analysis
Ko-Chao LEE ; Yu-Li SU ; Kuen-Lin WU ; Kung-Chuan CHENG ; Ling-Chiao SONG ; Chien-En TANG ; Hong-Hwa CHEN ; Kuan-Chih CHUNG
Annals of Coloproctology 2025;41(2):119-126
Purpose:
Colorectal cancer (CRC) often spreads to the liver, necessitating surgical treatment for CRC liver metastasis (CRLM). Iron-deficiency anemia is common in CRC patients and is associated with fatigue and weakness. This study investigated the effects of iron-deficiency anemia on the outcomes of surgical resection of CRLM.
Methods:
This population-based, retrospective study evaluated data from adults ≥20 years old with CRLM who underwent hepatic resection. All patient data were extracted from the 2005–2018 US National (Nationwide) Inpatient Sample (NIS) database. The outcome measures were in-hospital outcomes including 30-day mortality, unfavorable discharge, and prolonged length of hospital stay (LOS), and short-term complications such as bleeding and infection. Associations between iron-deficiency anemia and outcomes were determined using logistic regression analysis.
Results:
Data from 7,749 patients (representing 37,923 persons in the United States after weighting) were analyzed. Multivariable analysis revealed that iron-deficiency anemia was significantly associated with an increased risk of prolonged LOS (adjusted odds ratio [aOR], 2.76; 95% confidence interval [CI], 2.30–3.30), unfavorable discharge (aOR, 2.42; 95% CI, 1.83–3.19), bleeding (aOR, 5.05; 95% CI, 2.92–8.74), sepsis (aOR, 1.60; 95% CI, 1.04–2.46), pneumonia (aOR, 2.54; 95% CI, 1.72–3.74), and acute kidney injury (aOR, 1.71; 95% CI, 1.24–2.35). Subgroup analyses revealed consistent associations between iron-deficiency anemia and prolonged LOS across age, sex, and obesity status categories.
Conclusion
In patients undergoing hepatic resection for CRLM, iron-deficiency anemia is an independent risk factor for prolonged LOS, unfavorable discharge, and several critical postoperative complications. These findings underscore the need for proactive anemia management to optimize surgical outcomes.
9.Predictive Modeling of Symptomatic Intracranial Hemorrhage Following Endovascular Thrombectomy: Insights From the Nationwide TREAT-AIS Registry
Jia-Hung CHEN ; I-Chang SU ; Yueh-Hsun LU ; Yi-Chen HSIEH ; Chih-Hao CHEN ; Chun-Jen LIN ; Yu-Wei CHEN ; Kuan-Hung LIN ; Pi-Shan SUNG ; Chih-Wei TANG ; Hai-Jui CHU ; Chuan-Hsiu FU ; Chao-Liang CHOU ; Cheng-Yu WEI ; Shang-Yih YAN ; Po-Lin CHEN ; Hsu-Ling YEH ; Sheng-Feng SUNG ; Hon-Man LIU ; Ching-Huang LIN ; Meng LEE ; Sung-Chun TANG ; I-Hui LEE ; Lung CHAN ; Li-Ming LIEN ; Hung-Yi CHIOU ; Jiunn-Tay LEE ; Jiann-Shing JENG ;
Journal of Stroke 2025;27(1):85-94
Background:
and Purpose Symptomatic intracranial hemorrhage (sICH) following endovascular thrombectomy (EVT) is a severe complication associated with adverse functional outcomes and increased mortality rates. Currently, a reliable predictive model for sICH risk after EVT is lacking.
Methods:
This study used data from patients aged ≥20 years who underwent EVT for anterior circulation stroke from the nationwide Taiwan Registry of Endovascular Thrombectomy for Acute Ischemic Stroke (TREAT-AIS). A predictive model including factors associated with an increased risk of sICH after EVT was developed to differentiate between patients with and without sICH. This model was compared existing predictive models using nationwide registry data to evaluate its relative performance.
Results:
Of the 2,507 identified patients, 158 developed sICH after EVT. Factors such as diastolic blood pressure, Alberta Stroke Program Early CT Score, platelet count, glucose level, collateral score, and successful reperfusion were associated with the risk of sICH after EVT. The TREAT-AIS score demonstrated acceptable predictive accuracy (area under the curve [AUC]=0.694), with higher scores being associated with an increased risk of sICH (odds ratio=2.01 per score increase, 95% confidence interval=1.64–2.45, P<0.001). The discriminatory capacity of the score was similar in patients with symptom onset beyond 6 hours (AUC=0.705). Compared to existing models, the TREAT-AIS score consistently exhibited superior predictive accuracy, although this difference was marginal.
Conclusions
The TREAT-AIS score outperformed existing models, and demonstrated an acceptable discriminatory capacity for distinguishing patients according to sICH risk levels. However, the differences between models were only marginal. Further research incorporating periprocedural and postprocedural factors is required to improve the predictive accuracy.
10.Exercise Regulates Structural Plasticity and Neurogenesis of Hippocampal Neurons and Improves Memory Impairment in High-fat Diet-induced Obese Mice
Meng-Si YAN ; Lin-Jie SHU ; Chao-Ge WANG ; Ran CHENG ; Lian-Wei MU ; Jing-Wen LIAO
Progress in Biochemistry and Biophysics 2025;52(4):995-1007
ObjectiveObesity has been identified as one of the most important risk factors for cognitive dysfunction. Physical exercise can ameliorate learning and memory deficits by reversing synaptic plasticity in the hippocampus and cortex in diseases such as Alzheimer’s disease. In this study, we aimed to determine whether 8 weeks of treadmill exercise could alleviate hippocampus-dependent memory impairment in high-fat diet-induced obese mice and investigate the potential mechanisms involved. MethodsA total of sixty 6-week-old male C57BL/6 mice, weighing between 20-30 g, were randomly assigned to 3 distinct groups, each consisting of 20 mice. The groups were designated as follows: control (CON), high-fat diet (HFD), and high-fat diet with exercise (HFD-Ex). Prior to the initiation of the treadmill exercise protocol, the HFD and HFD-Ex groups were fed a high-fat diet (60% fat by kcal) for 20 weeks. The mice in the HFD-Ex group underwent treadmill exercise at a speed of 8 m/min for the first 10 min, followed by 12 m/min for the subsequent 50 min, totally 60 min of exercise at a 0° slope, 5 d per week, for 8 weeks. We employed Y-maze and novel object recognition tests to assess hippocampus-dependent memory and utilized immunofluorescence, Western blot, Golgi staining, and ELISA to analyze axon length, dendritic complexity, number of spines, the expression of c-fos, doublecortin (DCX), postsynaptic density-95 (PSD95), synaptophysin (Syn), interleukin-1β (IL-1β), and the number of major histocompatibility complex II (MHC-II) positive cells. ResultsMice with HFD-induced obesity exhibit hippocampus-dependent memory impairment, and treadmill exercise can prevent memory decline in these mice. The expression of DCX was significantly decreased in the HFD-induced obese mice compared to the control group (P<0.001). Treadmill exercise increased the expression of c-fos (P<0.001) and DCX (P=0.001) in the hippocampus of the HFD-induced obese mice. The axon length (P<0.001), dendritic complexity (P<0.001), the number of spines (P<0.001) and the expression of PSD95 (P<0.001) in the hippocampus were significantly decreased in the HFD-induced obese mice compared to the control group. Treadmill exercise increased the axon length (P=0.002), dendritic complexity(P<0.001), the number of spines (P<0.001) and the expression of PSD95 (P=0.001) of the hippocampus in the HFD-induced obese mice. Our study found a significant increase in MHC-II positive cells (P<0.001) and the concentration of IL-1β (P<0.001) in the hippocampus of HFD-induced obese mice compared to the control group. Treadmill exercise was found to reduce the number of MHC-II positive cells (P<0.001) and the concentration of IL-1β (P<0.001) in the hippocampus of obese mice induced by a HFD. ConclusionTreadmill exercise led to enhanced neurogenesis and neuroplasticity by increasing the axon length, dendritic complexity, dendritic spine numbers, and the expression of PSD95 and DCX, decreasing the number of MHC-II positive cells and neuroinflammation in HFD-induced obese mice. Therefore, we speculate that exercise may serve as a non-pharmacologic method that protects against HFD-induced hippocampus-dependent memory dysfunction by enhancing neuroplasticity and neurogenesis in the hippocampus of obese mice.


Result Analysis
Print
Save
E-mail