1.Isolation and structural identification of a potassium ion channel Kv4.1 inhibitor SsTx-P2 from centipede venom
Canwei DU ; Fuchu YUAN ; Xinyi DUAN ; Mingqiang RONG ; Er MENG ; Changjun LIU
Journal of Zhejiang University. Medical sciences 2024;53(2):194-200
Objective:To isolate a potassium ion channel Kv4.1 inhibitor from centipede venom,and to determine its sequence and structure.Methods:Ion-exchange chromatography and reversed-phase high-performance liquid chromatography were performed to separate and purify peptide components of centipede venom,and their inhibiting effect on Kv4.1 channel was determined by whole-cell patch clamp recording.The molecular weight of isolated peptide Kv4.1 channel inhibitor was identified with matrix assisted laser desorption ionization-time-of-flight mass spectrometry;its primary sequence was determined by Edman degradation sequencing and two-dimensional mass spectrometry;its structure was established based on iterative thread assembly refinement online analysis.Results:A peptide SsTx-P2 was separated from centipede venom with the molecular weight of 6122.8,and its primary sequence consists of 53 amino acid residues NH2-ELTWDFVRTCCKLFPDKSECTKACATEFTGGDESRLKDVWPRKLRSG DSRLKD-OH.Peptide SsTx-P2 potently inhibited the current of Kv4.1 channel transiently transfected in HEK293 cell,with 1.0 μmol/L SsTx-P2 suppressing 95%current of Kv4.1 channel.Its structure showed that SsTx-P2 shared a conserved helical structure.Conclusion:The study has isolated a novel peptide SsTx-P2 from centipede venom,which can potently inhibit the potassium ion channel Kv4.1 and displays structural conservation.
2.Isolation and structural identification of a potassium ion channel Kv4.1 inhibitor SsTx-P2 from centipede venom
Canwei DU ; Fuchu YUAN ; Xinyi DUAN ; Mingqiang RONG ; Er MENG ; Changjun LIU
Journal of Zhejiang University. Medical sciences 2024;53(2):194-200
Objective:To isolate a potassium ion channel Kv4.1 inhibitor from centipede venom,and to determine its sequence and structure.Methods:Ion-exchange chromatography and reversed-phase high-performance liquid chromatography were performed to separate and purify peptide components of centipede venom,and their inhibiting effect on Kv4.1 channel was determined by whole-cell patch clamp recording.The molecular weight of isolated peptide Kv4.1 channel inhibitor was identified with matrix assisted laser desorption ionization-time-of-flight mass spectrometry;its primary sequence was determined by Edman degradation sequencing and two-dimensional mass spectrometry;its structure was established based on iterative thread assembly refinement online analysis.Results:A peptide SsTx-P2 was separated from centipede venom with the molecular weight of 6122.8,and its primary sequence consists of 53 amino acid residues NH2-ELTWDFVRTCCKLFPDKSECTKACATEFTGGDESRLKDVWPRKLRSG DSRLKD-OH.Peptide SsTx-P2 potently inhibited the current of Kv4.1 channel transiently transfected in HEK293 cell,with 1.0 μmol/L SsTx-P2 suppressing 95%current of Kv4.1 channel.Its structure showed that SsTx-P2 shared a conserved helical structure.Conclusion:The study has isolated a novel peptide SsTx-P2 from centipede venom,which can potently inhibit the potassium ion channel Kv4.1 and displays structural conservation.
3.Isolation and structural identification of a potassium ion channel Kv4.1 inhibitor SsTx-P2 from centipede venom
Canwei DU ; Fuchu YUAN ; Xinyi DUAN ; Mingqiang RONG ; Er MENG ; Changjun LIU
Journal of Zhejiang University. Medical sciences 2024;53(2):194-200
Objective:To isolate a potassium ion channel Kv4.1 inhibitor from centipede venom,and to determine its sequence and structure.Methods:Ion-exchange chromatography and reversed-phase high-performance liquid chromatography were performed to separate and purify peptide components of centipede venom,and their inhibiting effect on Kv4.1 channel was determined by whole-cell patch clamp recording.The molecular weight of isolated peptide Kv4.1 channel inhibitor was identified with matrix assisted laser desorption ionization-time-of-flight mass spectrometry;its primary sequence was determined by Edman degradation sequencing and two-dimensional mass spectrometry;its structure was established based on iterative thread assembly refinement online analysis.Results:A peptide SsTx-P2 was separated from centipede venom with the molecular weight of 6122.8,and its primary sequence consists of 53 amino acid residues NH2-ELTWDFVRTCCKLFPDKSECTKACATEFTGGDESRLKDVWPRKLRSG DSRLKD-OH.Peptide SsTx-P2 potently inhibited the current of Kv4.1 channel transiently transfected in HEK293 cell,with 1.0 μmol/L SsTx-P2 suppressing 95%current of Kv4.1 channel.Its structure showed that SsTx-P2 shared a conserved helical structure.Conclusion:The study has isolated a novel peptide SsTx-P2 from centipede venom,which can potently inhibit the potassium ion channel Kv4.1 and displays structural conservation.
4.Isolation and structural identification of a potassium ion channel Kv4.1 inhibitor SsTx-P2 from centipede venom
Canwei DU ; Fuchu YUAN ; Xinyi DUAN ; Mingqiang RONG ; Er MENG ; Changjun LIU
Journal of Zhejiang University. Medical sciences 2024;53(2):194-200
Objective:To isolate a potassium ion channel Kv4.1 inhibitor from centipede venom,and to determine its sequence and structure.Methods:Ion-exchange chromatography and reversed-phase high-performance liquid chromatography were performed to separate and purify peptide components of centipede venom,and their inhibiting effect on Kv4.1 channel was determined by whole-cell patch clamp recording.The molecular weight of isolated peptide Kv4.1 channel inhibitor was identified with matrix assisted laser desorption ionization-time-of-flight mass spectrometry;its primary sequence was determined by Edman degradation sequencing and two-dimensional mass spectrometry;its structure was established based on iterative thread assembly refinement online analysis.Results:A peptide SsTx-P2 was separated from centipede venom with the molecular weight of 6122.8,and its primary sequence consists of 53 amino acid residues NH2-ELTWDFVRTCCKLFPDKSECTKACATEFTGGDESRLKDVWPRKLRSG DSRLKD-OH.Peptide SsTx-P2 potently inhibited the current of Kv4.1 channel transiently transfected in HEK293 cell,with 1.0 μmol/L SsTx-P2 suppressing 95%current of Kv4.1 channel.Its structure showed that SsTx-P2 shared a conserved helical structure.Conclusion:The study has isolated a novel peptide SsTx-P2 from centipede venom,which can potently inhibit the potassium ion channel Kv4.1 and displays structural conservation.
5.Isolation and structural identification of a potassium ion channel Kv4.1 inhibitor SsTx-P2 from centipede venom
Canwei DU ; Fuchu YUAN ; Xinyi DUAN ; Mingqiang RONG ; Er MENG ; Changjun LIU
Journal of Zhejiang University. Medical sciences 2024;53(2):194-200
Objective:To isolate a potassium ion channel Kv4.1 inhibitor from centipede venom,and to determine its sequence and structure.Methods:Ion-exchange chromatography and reversed-phase high-performance liquid chromatography were performed to separate and purify peptide components of centipede venom,and their inhibiting effect on Kv4.1 channel was determined by whole-cell patch clamp recording.The molecular weight of isolated peptide Kv4.1 channel inhibitor was identified with matrix assisted laser desorption ionization-time-of-flight mass spectrometry;its primary sequence was determined by Edman degradation sequencing and two-dimensional mass spectrometry;its structure was established based on iterative thread assembly refinement online analysis.Results:A peptide SsTx-P2 was separated from centipede venom with the molecular weight of 6122.8,and its primary sequence consists of 53 amino acid residues NH2-ELTWDFVRTCCKLFPDKSECTKACATEFTGGDESRLKDVWPRKLRSG DSRLKD-OH.Peptide SsTx-P2 potently inhibited the current of Kv4.1 channel transiently transfected in HEK293 cell,with 1.0 μmol/L SsTx-P2 suppressing 95%current of Kv4.1 channel.Its structure showed that SsTx-P2 shared a conserved helical structure.Conclusion:The study has isolated a novel peptide SsTx-P2 from centipede venom,which can potently inhibit the potassium ion channel Kv4.1 and displays structural conservation.
6.Isolation and structural identification of a potassium ion channel Kv4.1 inhibitor SsTx-P2 from centipede venom
Canwei DU ; Fuchu YUAN ; Xinyi DUAN ; Mingqiang RONG ; Er MENG ; Changjun LIU
Journal of Zhejiang University. Medical sciences 2024;53(2):194-200
Objective:To isolate a potassium ion channel Kv4.1 inhibitor from centipede venom,and to determine its sequence and structure.Methods:Ion-exchange chromatography and reversed-phase high-performance liquid chromatography were performed to separate and purify peptide components of centipede venom,and their inhibiting effect on Kv4.1 channel was determined by whole-cell patch clamp recording.The molecular weight of isolated peptide Kv4.1 channel inhibitor was identified with matrix assisted laser desorption ionization-time-of-flight mass spectrometry;its primary sequence was determined by Edman degradation sequencing and two-dimensional mass spectrometry;its structure was established based on iterative thread assembly refinement online analysis.Results:A peptide SsTx-P2 was separated from centipede venom with the molecular weight of 6122.8,and its primary sequence consists of 53 amino acid residues NH2-ELTWDFVRTCCKLFPDKSECTKACATEFTGGDESRLKDVWPRKLRSG DSRLKD-OH.Peptide SsTx-P2 potently inhibited the current of Kv4.1 channel transiently transfected in HEK293 cell,with 1.0 μmol/L SsTx-P2 suppressing 95%current of Kv4.1 channel.Its structure showed that SsTx-P2 shared a conserved helical structure.Conclusion:The study has isolated a novel peptide SsTx-P2 from centipede venom,which can potently inhibit the potassium ion channel Kv4.1 and displays structural conservation.
7.Isolation and structural identification of a potassium ion channel Kv4.1 inhibitor SsTx-P2 from centipede venom
Canwei DU ; Fuchu YUAN ; Xinyi DUAN ; Mingqiang RONG ; Er MENG ; Changjun LIU
Journal of Zhejiang University. Medical sciences 2024;53(2):194-200
Objective:To isolate a potassium ion channel Kv4.1 inhibitor from centipede venom,and to determine its sequence and structure.Methods:Ion-exchange chromatography and reversed-phase high-performance liquid chromatography were performed to separate and purify peptide components of centipede venom,and their inhibiting effect on Kv4.1 channel was determined by whole-cell patch clamp recording.The molecular weight of isolated peptide Kv4.1 channel inhibitor was identified with matrix assisted laser desorption ionization-time-of-flight mass spectrometry;its primary sequence was determined by Edman degradation sequencing and two-dimensional mass spectrometry;its structure was established based on iterative thread assembly refinement online analysis.Results:A peptide SsTx-P2 was separated from centipede venom with the molecular weight of 6122.8,and its primary sequence consists of 53 amino acid residues NH2-ELTWDFVRTCCKLFPDKSECTKACATEFTGGDESRLKDVWPRKLRSG DSRLKD-OH.Peptide SsTx-P2 potently inhibited the current of Kv4.1 channel transiently transfected in HEK293 cell,with 1.0 μmol/L SsTx-P2 suppressing 95%current of Kv4.1 channel.Its structure showed that SsTx-P2 shared a conserved helical structure.Conclusion:The study has isolated a novel peptide SsTx-P2 from centipede venom,which can potently inhibit the potassium ion channel Kv4.1 and displays structural conservation.
8.Isolation and structural identification of a potassium ion channel Kv4.1 inhibitor SsTx-P2 from centipede venom
Canwei DU ; Fuchu YUAN ; Xinyi DUAN ; Mingqiang RONG ; Er MENG ; Changjun LIU
Journal of Zhejiang University. Medical sciences 2024;53(2):194-200
Objective:To isolate a potassium ion channel Kv4.1 inhibitor from centipede venom,and to determine its sequence and structure.Methods:Ion-exchange chromatography and reversed-phase high-performance liquid chromatography were performed to separate and purify peptide components of centipede venom,and their inhibiting effect on Kv4.1 channel was determined by whole-cell patch clamp recording.The molecular weight of isolated peptide Kv4.1 channel inhibitor was identified with matrix assisted laser desorption ionization-time-of-flight mass spectrometry;its primary sequence was determined by Edman degradation sequencing and two-dimensional mass spectrometry;its structure was established based on iterative thread assembly refinement online analysis.Results:A peptide SsTx-P2 was separated from centipede venom with the molecular weight of 6122.8,and its primary sequence consists of 53 amino acid residues NH2-ELTWDFVRTCCKLFPDKSECTKACATEFTGGDESRLKDVWPRKLRSG DSRLKD-OH.Peptide SsTx-P2 potently inhibited the current of Kv4.1 channel transiently transfected in HEK293 cell,with 1.0 μmol/L SsTx-P2 suppressing 95%current of Kv4.1 channel.Its structure showed that SsTx-P2 shared a conserved helical structure.Conclusion:The study has isolated a novel peptide SsTx-P2 from centipede venom,which can potently inhibit the potassium ion channel Kv4.1 and displays structural conservation.
9.Isolation and structural identification of a potassium ion channel Kv4.1 inhibitor SsTx-P2 from centipede venom.
Canwei DU ; Fuchu YUAN ; Xinyi DUAN ; Mingqiang RONG ; Er MENG ; Changjun LIU
Journal of Zhejiang University. Medical sciences 2024;():1-7
OBJECTIVES:
To isolate potassium ion channel Kv4.1 inhibitor from centipede venom, and to determine its primary and spatial structure.
METHODS:
Ion-exchange chromatography and reversed-phase high-performance liquid chromatography were performed to separate and purify peptide components of centipede venom, and their inhibiting effect on Kv4.1 channel was determined by whole-cell patch clamp recording. The molecular weight of isolated peptide Kv4.1 channel inhibitor was identified with MALDI-TOF, its primary sequence was determined by Edman degradation sequencing and two-dimensional mass spectrometry, its patial structure was established based on iterative thread assembly refinement online analysis.
RESULTS:
A peptide SsTx-P2 was separated from centipede venom with the molecular weight of 6122.8, and its primary sequence consists of 53 amino acid residues, showed as NH2-ELTWDFVRTCCKLFPDKSECTKACATEFTGGDESRLKDVWPRKLRSGDSRLKD-OH. Peptide SsTx-P2 potently inhibited the current of Kv4.1 channel transiently transfected in HEK293 cell, with 1.0 μmol/L SsTx-P2 suppressing 95% current of Kv4.1 channel. Its spatial structure showed that SsTx-P2 shared a conserved helical structure.
CONCLUSIONS
The study has isolated a novel peptide SsTx-P2 from centipede venom, which can potently inhibit the potassium ion channel Kv4.1, and its spatial structure displays a certain degree of conservation.
10.MicroRNA-708-3p as a potential therapeutic target via the ADAM17-GATA/STAT3 axis in idiopathic pulmonary fibrosis
Bo LIU ; Rongrong LI ; Jinjin ZHANG ; Chao MENG ; Jie ZHANG ; Xiaodong SONG ; Changjun LV
Experimental & Molecular Medicine 2018;50(3):e465-
MicroRNAs (miRNAs) are important diagnostic markers and therapeutic targets for many diseases. However, the miRNAs that control the pathogenesis of idiopathic pulmonary fibrosis (IPF) and act as potential therapeutic targets for the disease are rarely studied. In the present study, we analyzed the function and regulatory mechanism of microRNA-708-3p (miR-708-3p) and evaluated this marker’s potential as a therapeutic target in IPF. The clinical and biological relevance of fibrogenesis for miR-708-3p was assessed in vivo and in vitro, specifically in matching plasma and tissue samples from 78 patients with IPF. The data showed that the miR-708-3p levels decreased during fibrosis and inversely correlated with IPF. The experiments showed that the decreased miR-708 promoter activity and primer-miR-708(pri-miR-708) expression were the potential causes. By computational analysis, a dual luciferase reporter system, rescue experiments and a Cignal Finder 45-Pathway system with siADAM17 and a miR-708-3p mimic, we identified that miR-708-3p directly regulates its target gene, a disintegrin and metalloproteinase 17 (ADAM17), through a binding site in the 3′ untranslated region, which depends on the GATA/STAT3 signaling pathway. Finally, an miR-708-3p agomir was designed and used to test the therapeutic effects of the miR-708-3p in an animal model. Small-animal imaging technology and other experiments showed that the dynamic image distribution of the miR-708-3p agomir was mainly concentrated in the lungs and could block fibrogenesis. In conclusion, the miR-708-3p–ADAM17 axis aggravates IPF, and miR-708-3p can serve as a potential therapeutic target for IPF.

Result Analysis
Print
Save
E-mail