1.Investigation of hypoxia detection in tumor.
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2012;26(24):1148-1151
Hypoxia could not only induce tumor chemoradiotherapeutic resistance, but also cause strong invasiveness which make tumor inclined to recurrence and metastasis. With regard to the detection of oxygenation condition in tumor tissue, there are many methods, but each has its advantages and disadvantages. Accurate monitoring of tumor oxygenation state plays an important role in therapeutic schedule formulation and implementation which would improve curative effect of tumor.
Animals
;
Cell Hypoxia
;
Humans
;
Hypoxia
;
Neoplasms
;
blood
;
Oximetry
;
methods
2.Salvianolic acid B regulates mitochondrial autophagy mediated by NIX to protect H9c2 cardiomyocytes from hypoxia/reoxygenation injury.
Gao-Jie XIN ; Jian-Hua FU ; Xiao HAN ; Lei LI ; Hao GUO ; Hong-Xu MENG ; Yu-Wei ZHAO ; Fei-Fan JIA ; Jian-Xun LIU
China Journal of Chinese Materia Medica 2020;45(12):2960-2965
The aim of this paper was to investigate whether the mechanism of salvianolic acid B in protecting H9 c2 cardiomyocytes from hypoxia/reoxygenation injury is related to the regulation of mitochondrial autophagy mediated by NIX. H9 c2 cardiomyocytes were cultured in vitro and divided into normal group, model group and salvianolic acid B group(50 μmol·L~(-1)). Hypoxia/reoxygenation injury model was established by hypoxia for 4 h and reoxygenation for 2 h. In normal group, high glucose DMEM medium was used for culture. Those in model group were cultured with DMEM medium without glucose and oxygen, and no drugs for hypoxia and reoxyge-nation. In salvianolic acid B group, salvianolic acid B prepared by glucose-free DMEM medium was added during hypoxia, and the other process was as same as the model group. The cell viability was evaluated by CCK-8 assay. The leakage of lactate dehydrogenase(LDH) was detected by microplate method. The levels of intracellular reactive oxygen species(ROS) and mitochondrial membrane potential(ΔΨm) were measured by chemical fluorescence method. The level of intracellular adenosine triphosphate(ATP) was mea-sured by fluorescein enzyme method. The autophagy related proteins LC3-Ⅰ, LC3-Ⅱ, apoptosis related protein cleaved caspase-3 and mitochondrial autophagy receptor protein NIX were detected by Western blot. As compared with the normal group, the activity of H9 c2 cardiomyocytes and ATP level were decreased(P<0.05); LDH leakage and ROS production were increased(P<0.01); ΔΨm was decreased(P<0.01); LC3-Ⅱ/LC3-Ⅰ ratio, cleaved caspase-3 and NIX protein expression levels were increased(all P<0.05) in the model group. As compared with the model group, the activity of cells and ΔΨm were significantly increased(P<0.01); ATP level was increased(P<0.05); LDH leakage and ROS generation were decreased(P<0.01); LC3-Ⅱ/LC3-Ⅰ ratio was decreased(P<0.01); cleaved caspase-3 and NIX expression levels were decreased(P<0.05) in the salvianolic acid B group. The protective effect of salvianolic acid B on hypoxia/reoxygenation injury of H9 c2 cardiomyocytes may be associated with inhibiting mitochondrial auto-phagy. The specific mechanism may be related to inhibiting the activation of mitochondrial autophagy mediated by NIX, increasing ΔΨm, reducing ROS production, reducing the expression of cleaved caspase-3, LC3-Ⅱ, and increasing cell viability.
Apoptosis
;
Autophagy
;
Benzofurans
;
Cell Hypoxia
;
Cell Survival
;
Humans
;
Hypoxia
;
Myocytes, Cardiac
3.Mechanism of participation of osteocytes in the formation of osteoclasts under hypoxia.
Jie ZHU ; Yi TANG ; Qing WU ; Ying-Chen JI ; Fei-Wu KANG
West China Journal of Stomatology 2019;37(5):463-468
OBJECTIVE:
To investigate the mechanism of the participation of osteocytes in the formation of osteoclasts under hypoxia.
METHODS:
The hypoxia culture system of osteocyte-like cell line MLO-Y4 was established by deferoxamine mesylate (DFO) in vitro. The proliferation of MLO-Y4 cells was examined by CCK-8 cell proliferation/toxicity assay. RAW264.7 cells were induced to osteoclasts by the conditioned medium containing the cultured MLO-Y4. Tartrate-resistant acid phosphatase (TRAP) staining was performed on day 7. Quantitative real-time fluorescence polymerase chain reaction, immunofluorescence, and Western blot were used to detect the expression levels of hypoxia-inducible factor (HIF)-1α and receptor activator of nuclear factor-κB ligand (RANKL) in MLO-Y4 under hypoxia. The effects of siHIF-1α on the expression levels of HIF-1α and RANKL in MLO-Y4 under the same conditions were detected.
RESULTS:
DFO (100 μmol·L⁻¹) promoted the proliferation of MLO-Y4 at 24 h, which decreased with time (P<0.01). After the addition of soluble sRANKL, the formation of osteoclasts was significantly increased in the DFO group (P<0.001). The expression of RANKL mRNA in MLO-Y4 under 100 μmol·L⁻¹ DFO increased first and then decreased with the duration of hypoxia. This expression reached a peak at 24 h (P<0.01). Hypoxia up-regulated the expression of HIF-1α and RANKL protein (P<0.01). Under hypoxia, siHIF-1α downregulated the expression of HIF-1α and RANKL (P<0.01). siHIF-1α also decreased the number of osteoclasts (P<0.01).
CONCLUSIONS
Under hypoxia, MLO-Y4 could facilitate the formation of RANKL through upre-gulating the expression of HIF-1α protein, thereby accelerate the differentiation of RAW264.7 cells into osteoclasts.
Cell Differentiation
;
Cell Line
;
Humans
;
Hypoxia
;
Osteoclasts
;
Osteocytes
4.Effect of ultraviolet irradiation on the proliferation of acute promyelocytic leukemia cells under hypoxic conditions and related mechanisms.
Yi-Lin WANG ; Ling-Zhen WANG ; Jian-Dong SUN ; Xue-Rong LI ; Zhi WANG ; Li-Rong SUN
Chinese Journal of Contemporary Pediatrics 2019;21(5):491-496
OBJECTIVE:
To study the effect of 280 nm-LED ultraviolet irradiation on the proliferation of acute promyelocytic leukemia (APL) HL-60 cells under hypoxic conditions and related mechanism.
METHODS:
HL-60 cells in the logarithmic growth phase were selected and divided into control, hypoxia, ultraviolet and hypoxia+ultraviolet groups. The cells in the hypoxia group were treated with cobalt chloride (with a final concentration of 150 μmol/L), those in the ultraviolet group were irradiated by 280 nm-LED ultraviolet with an energy intensity of 30 J/m, and those in the hypoxia+ultraviolet group were treated with cobalt chloride and then irradiated by 280 nm-LED ultraviolet. After 48 hours of treatment, the cells were placed under an invert microscope to observe cell morphology. CCK-8 assay was used to measure the inhibition rate of cell proliferation. Annexin V-FITC/PI double staining flow cytometry was used to evaluate cell apoptosis. Quantitative real-time PCR was used to measure the mRNA expression of Bcl-2. Each experiment above was repeated three times independently.
RESULTS:
Compared with the control group, the experimental groups showed shrinkage, decreased brightness, and disordered arrangement of cells, and the number of cells decreased over the time of culture. There were significant differences in the inhibition rate of cell proliferation and cell apoptosis rate among the groups (P<0.01), and the hypoxia+ultraviolet group showed the strongest inhibition of cell proliferation and induction of cell apoptosis, followed by the ultraviolet group and the hypoxia group. Compared with the control group, the other three groups had a gradual reduction in the mRNA expression of Bcl-2, and the hypoxia+ultraviolet group had a significantly greater reduction than the hypoxia and ultraviolet groups (P<0.01).
CONCLUSIONS
Both hypoxia and ultraviolet irradiation can inhibit the proliferation of HL-60 cells and induce cell apoptosis, and ultraviolet irradiation has a better effect on proliferation inhibition and cell apoptosis under hypoxic conditions than under normoxic conditions, possibly by downregulating the mRNA expression of Bcl-2.
Apoptosis
;
Cell Hypoxia
;
Cell Proliferation
;
Humans
;
Leukemia, Promyelocytic, Acute
5.Inhibiting miR-186 expression alleviates mitochondrial damage in hypoxic human umbilical vein endothelial cells.
Haifan YANG ; Jiangang XIE ; Jinming ZHANG ; Yuan CHANG ; Jing HAN
Journal of Southern Medical University 2019;39(8):898-903
OBJECTIVE:
To investigate the effect of miR-186 inhibition on the expression of hypoxia-inducible factor-1α (HIF-α) and mitochondrial function in hypoxic vascular endothelial cells.
METHODS:
Human umbilical vein endothelial cells (HUVECs) cultured in routine or hypoxic conditions for 6 h were examined for the expression of miR-186. A miR-186 inhibitor was transfected in the HUVECs, and the cells were subsequently cultured in hypoxic condition for 6 h to observe the changes in the mitochondrial structure under an electron microscope. The changes in the mRNA and protein expressions of HIF-1α in response to miR-186 interference were tested using real-time fluorescent quantitative PCR and Western blotting.
RESULTS:
The expression of miR-18 was mildly increased in HUVECs after hypoxic exposure for 6 h (=0.0188). Interference of miR-186 expression obviously promoted the mRNA and protein expressions of HIF-1α in HUVECs. In hypoxic conditions, miR-186 interference significantly reduced mitochondrial damage in HUVECs as observed under electron microscope (=0.0297).
CONCLUSIONS
Inhibition of miR-186 protects vascular endothelial cells against hypoxic injuries by promoting HIF-α expression to lessen mitochondrial damage, suggesting the possibility of targeted miR-186 interference for treatment of hemorrhagic shock.
Cell Hypoxia
;
Human Umbilical Vein Endothelial Cells
;
Humans
;
Hypoxia
;
Hypoxia-Inducible Factor 1, alpha Subunit
;
MicroRNAs
;
Mitochondria
;
Umbilical Veins
6.Modulation of drug-metabolizing enzymes and transporters under hypoxia environment.
Qiong MIN ; Shi-Lan FENG ; Hui LU ; Wen-Bin LI ; Chang WANG ; Juan-Hong ZHANG ; Rong WANG
Acta Physiologica Sinica 2019;71(2):336-342
Drug metabolism is significantly affected under hypoxia environment with changes of pharmacokinetics, expression and function of drug-metabolizing enzymes and transporters. Studies have shown that hypoxia increases the release of a series of inflammatory cytokines which can modulate drug metabolism. Besides, both hypoxia inducible factor 1α (HIF-1α) and microRNA-mediated pathways play a role in regulating drug metabolism. This article reviewed the impact and single-factor modulating mechanisms of drug metabolism under hypoxia, and put forward the speculation and prospects of multi-factor modulating mechanisms.
Cell Hypoxia
;
Humans
;
Hypoxia
;
Hypoxia-Inducible Factor 1, alpha Subunit
;
physiology
;
Membrane Transport Proteins
;
physiology
;
MicroRNAs
;
physiology
;
Pharmaceutical Preparations
;
metabolism
7.HIF-1 signal pathway in cellular response to hypoxia.
Ping-ping WANG ; Fan-ping KONG ; Xue-qun CHEN ; Ji-zeng DU
Journal of Zhejiang University. Medical sciences 2011;40(5):559-566
HIF-1 is composed of HIF-1α and HIF-1β subunits. It promotes target genes transcription under hypoxia and plays essential roles in cell development, physiological adaptations, and pathological processes. In the past 10 years, the research on signaling pathways of HIF-1 in response to cell hypoxia stress, especially on HIF-1α-mediated gene transcription has made great progress.
Animals
;
Cell Hypoxia
;
physiology
;
Humans
;
Hypoxia-Inducible Factor 1
;
metabolism
;
Signal Transduction
8.Airway epithelial cells increase macrophage chemotaxis and inflammatory cytokine secretion under hypoxic conditions.
Xingwu CHEN ; Lilong QING ; Zhengui SUN ; Min XING ; Leilei ZANG ; Hanli WANG
Journal of Central South University(Medical Sciences) 2019;44(2):134-143
To investigate the effects of airway epithelial cells on macrophages chemotaxis and inflammatory cytokine expression under hypoxic conditions.
Methods: Human bronchial epithelial cells (HBE) treated with different concentrations (0, 100, 200, 400, 800 μmol/L) of CoCl2 or transfected with HIF-1α siRNA were co-cultured with THP-1-derived M1 macrophages or M2 macrophages. The chemotactic effects on macrophages were analyzed by Transwell assay. The levels of TNF-α, IFN-γ, IL-4, IL-13 and IL-10 in the supernatants of macrophages were detected by ELISA, and HIF-1α or Cav-1 mRNA expression in HBE or macrophages was detected by RT-qPCR.
Results: HBE cells promoted macrophages chemotaxis in a time- and concentration-dependent manner. Compared to un-transfected group, the chemotactic ability of HBE transfected with HIF-1α siRNA was significantly weakened (P<0.01). Under the same culture conditions, the chemotaxis of M2 macrophages was greater than that in THP1-derived M1 macrophages. The concentrations of TNF-α, IFN-γ, IL-4, IL-13 and IL-10 in the supernatants of macrophages were increased in a time-and concentration-dependent manner. The concentrations of TNF-α and IFN-γ were increased further after co-culturing for 8 and 12 h; while IL-4, IL-13 and IL-10 concentrations were increased further during 24 h of co-culture. The levels of cytokines in the supernatants of macrophages co-cultured with HBE and transfected with HIF-1α siRNA were significantly lower than those in un-transfected cells (P<0.05 or P<0.01). The reduction of TNF-α or IFN-γ was more obvious. The expression of HIF-1α or Cav-1 mRNA in HBE or macrophages was increased in a concentration-dependent manner after 8 or 12 h co-culture, which was significantly reduced when HBE was transfected with HIF-1α siRNA.
Conclusion: Airway epithelial cells can enhance macrophages chemotaxis and pro-inflammatory cytokines expressions under hypoxic condition. HIF-1α and Cav-1 may be the important mediators in these processes.
Cell Hypoxia
;
Chemotaxis
;
Cytokines
;
Epithelial Cells
;
Humans
;
Hypoxia-Inducible Factor 1, alpha Subunit
;
Macrophages
9.Establishment of a hypobaric hypoxia-induced cell injury model in PC12 cells.
Dongmei ZHANG ; Qilu CAO ; Linlin JING ; Xiuhua ZHAO ; Huiping MA
Journal of Zhejiang University. Medical sciences 2021;50(5):614-620
To construct a hypobaric hypoxia-induced cell injury model. Rat pheochromocytoma PC12 cells were randomly divided into control group, normobaric hypoxia group and hypobaric hypoxia group. The cells in control group were cultured at normal condition, while cells in other two groups were cultured in normobaric hypoxia and hypobaric hypoxia conditions, respectively. CCK-8 method was used to detect cell viability to determine the optimal modeling conditions like the oxygen concentration, atmospheric pressure and low-pressure hypoxia time. The contents of lactate dehydrogenase (LDH), superoxide dismutase (SOD) and malondialdehyde (MDA) were detected by microplate method. The apoptosis ratio and cell cycle were analyzed by flow cytometry. The hypobaric hypoxia-induced cell injury model can be established by culturing for 24 h at 1% oxygen concentration and 41 kPa atmospheric pressure. Compared with the control group and normobaric hypoxia group, the activity of LDH and the content of MDA in hypobaric hypoxia group were significantly increased, the activity of SOD was decreased, the percentage of apoptosis was increased (all <0.05), and the cell cycle was arrested in G0/G1 phase. A stable and reliable cell injury model induced by hypobaric hypoxia has been established with PC12 cells, which provides a suitable cell model for the experimental study on nerve injury induced by hypoxia at high altitude.
Animals
;
Cell Hypoxia
;
Hypoxia
;
Malondialdehyde
;
PC12 Cells
;
Rats
;
Superoxide Dismutase/metabolism*
10.Propofol protects human cardiac AC16 cells from CoCl2-induced hypoxic injury.
Liu HAN ; Xiaodan ZHANG ; Yanning QIAN
Journal of Central South University(Medical Sciences) 2019;44(3):307-314
To explore the effect of propofol on human cardiac AC16 cells under CoCl2-induced hypoxic injury and the possible mechanisms.
Methods: Human AC16 cardiomyocytes were treated with cobalt chloride (CoCl2) to mimic hypoxic condition in cultured cardiomyocytes. The AC16 cells were divided into 3 groups: a control group, a CoCl2 hypoxia group (CoCl2 group), and a propofol+CoCl2 group (propofol+ CoCl2 group). The cell viability was assessed by cell counting kit-8 (CCK-8). Cell apoptosis ratio (AR) and the mitochondrial membrane potential (Δψm) were detected by flow cytometry. The reactive oxygen species (ROS) production in AC16 cells were determined with the ROS-sensitive fluorescent probe. Meanwhile, total intracellular levels of malondialdehyde (MDA) and superoxide dismutase (SOD) in AC16 cells were detected with commercially available kits. Western blot was used to evaluate the activation of c-Jun N-terminal kinase (JNK) and p38 signaling pathways.
Results: 1) Compared with the control group, AC16 cell viability was decreased significantly in the CoCl2 group following the treatment with 500 μmol/L CoCl2 (P<0.01); 2) Compared with the control group, AR value in AC16 cells was increased significantly in the CoCl2 group, while Δψm was decreased significantly (all P<0.01). Compared with the CoCl2 group, AR value in AC16 cells was decreased significantly in the propofol+CoCl2 group, while Δψm was increased significantly (both P<0.05); 3) Compared with the control group, the levels of ROS and MDA were increased significantly, and the level of SOD was significantly decreased in the CoCl2 group (all P<0.01). Compared with the CoCl2 group, the ROS and MDA levels in the propofol+CoCl2 group were increased significantly and the SOD levels were decreased significantly (all P<0.05); 4) Compared with the control group, the phosphorylation levels of JNK and p38 were increased significantly (both P<0.05) in the CoCl2 group. Compared with the CoCl2 group, the phosphorylation levels of JNK and p38 were decreased significantly in the propofol+CoCl2 group (both P<0.05).
Conclusion: The pretreatment with propofol may protect human cardiac AC16 cells from the chemical hypoxia-induced injury through regulation of JNK and p38 signaling pathways.
Apoptosis
;
Cell Hypoxia
;
Cell Line
;
Cell Survival
;
Cobalt
;
pharmacology
;
Humans
;
Hypoxia
;
JNK Mitogen-Activated Protein Kinases
;
Propofol
;
Reactive Oxygen Species