1.T Cell Differentiation and Th17.
Korean Journal of Otolaryngology - Head and Neck Surgery 2008;51(8):688-693
No abstract available.
Cell Differentiation
2.A Rare Case of Mesothelioma Showing Micropapillary and Small Cell Differentiation with Aggressive Behavior.
Yoon Jin CHA ; Binnari KIM ; Joungho HAN ; Chin A YI ; Jae Ill ZO
Korean Journal of Pathology 2014;48(6):466-468
No abstract available.
Cell Differentiation*
;
Mesothelioma*
3.Polarity of ameloblasts and odontoblasts and their related regulators.
Yi-Jun ZHOU ; Guang-Xing YAN ; Cang-Wei LIU ; Xue ZHANG ; Yue HU ; Xin-Qing HAO ; Huan ZHAO ; Ce SHI ; Hong-Chen SUN
West China Journal of Stomatology 2019;37(3):309-313
The polarity of ameloblasts and odontoblasts is crucial for their differentiation and function. Polarity-related molecules play an important role in this process. This review summarizes the process of polarity formation of ameloblasts and odontoblasts and their related regulators.
Ameloblasts
;
Cell Differentiation
;
Odontoblasts
4.The biological effects of fibronectin typeIII 7-10 to MC3T3-E1 osteoblast.
Jeong Ug HONG ; Sang Mook CHOI ; Soo Boo HAN ; Chong Pyoung CHUNG ; In Chul RHYU ; Yong Moo LEE ; Young KU
The Journal of the Korean Academy of Periodontology 2002;32(1):143-160
No abstract available.
Cell Differentiation
;
Cell Proliferation
;
Fibronectins*
;
Osteoblasts*
;
Titanium
5.Neural Stem Cell Competition.
Neuroscience Bulletin 2024;40(2):277-279
7.Substitution for
Hao HUANG ; Chao-Zong LIU ; Teng YI ; Maryam TAMADDON ; Shan-Shan YUAN ; Zhen-Yun SHI ; Zi-Yu LIU
Chinese Medical Sciences Journal 2021;36(4):323-332
To get an optimal product of orthopaedic implant or regenerative medicine needs to follow trial-and-error analyses to investigate suitable product's material, structure, mechanical properites etc. The whole process from
Cell Differentiation
;
Cell Movement
;
Cell Proliferation
;
Computer Simulation
;
Tissue Engineering
8.Generation and regulation of Leydig cells.
National Journal of Andrology 2014;20(3):273-276
Leydig cells, located in the loose interstitial tissue of seminiferous tubules, are the major site for androgen synthesis and secretion, and play an important role in the reproductively and fertility of males. The dysfunction of Leydig cells may lead to various male diseases, such as primary hypogonadism, cryptorchidism, and hypospadias. This review outlines the recent findings concerning the generation, development and regulation of Leydig cells.
Cell Differentiation
;
Humans
;
Leydig Cells
;
cytology
;
Male
9.Research update on urine-derived stem cells.
Wengen ZHU ; Wenfeng HE ; Kui HONG
Chinese Journal of Cardiology 2014;42(7):616-618
10.Induction of petal-like structures from petals of Crocus sativus L. and the differentiation of style-stigma-like structures in vitro.
Li WANG ; Yi LI ; Xiang-Jun DONG ; Wen-Hua XU ; Bao-Chen ZHANG
Chinese Journal of Biotechnology 2002;18(5):638-640
Firstly the petal of Crocus sativus L was cultured on the medium that supplemented with different combinations of hormones. The petal-like structures(PLS) were induced on medium, but the induction rates were different in various medium. The highest induction rate of petal-like structures was obtained on the media that was supplemented with NAA (4 mg/L) and KT (8 mg/L). The petal-like structures were subcultured on another media when the structure was produced on the explants and proliferate groups. The later media was used for inducing style-stigma-like structures(SSLS). The induction rate of style-stigma-like-structures in the petal-like structures group is much higher than the rate in the preceding work, and the maximum of style-stigma-like structures produced per explant was 30. The best result of style-stigma-like structures was observed on the petal-like structure groups which came from the third treatment. The differentiation rate of style-stigma-like structures is stable in the subcultures of petal-like structures. The result revealed that the induction frequency of style-stigma-like structures formed on the petal-like structures is higher than that form on the petals of C. sativus L.
Cell Differentiation
;
Crocus
;
growth & development
;
Culture Media