1.Yishen Tongluo Prescription Ameliorates Oxidative Stress Injury in Mouse Model of Diabetic Kidney Disease via Nrf2/HO-1/NQO1 Signaling Pathway
Yifei ZHANG ; Xuehui BAI ; Zijing CAO ; Zeyu ZHANG ; Jingyi TANG ; Junyu XI ; Shujiao ZHANG ; Shuaixing ZHANG ; Yiran XIE ; Yuqi WU ; Zhongjie LIU ; Weijing LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):41-51
ObjectiveTo investigate the effect and mechanism of Yishen Tongluo prescription in protecting mice from oxidative stress injury in diabetic kidney disease (DKD) via the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1)/NAD(P)H quinone oxidoreductase 1 (NQO1) signaling pathway. MethodsSpecific pathogen-free (SPF) male C57BL/6 mice were assigned into a control group (n=10) and a modeling group (n=50). The DKD model was established by intraperitoneal injection of streptozotocin. The mice in the modeling group were randomized into a model group, a semaglutide (40 μg·kg-1) group, and high-, medium-, and low-dose (18.2, 9.1, 4.55 g·kg-1, respectively) Yishen Tongluo prescription groups, with 10 mice in each group. The treatment lasted for 12 weeks. Blood glucose and 24-h urine protein levels were measured, and the kidney index (KI) was calculated. Serum levels of creatinine (SCr), blood urea nitrogen (BUN), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were assessed. The pathological changes in the renal tissue were evaluated by hematoxylin-eosin, periodic acid-Schiff, periodic acid-silver methenamine, and Masson’s trichrome staining. Enzyme-linked immunosorbent assay kits were used to measure the levels of β2-microglobulin (β2-MG), neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), liver fatty acid-binding protein (L-FABP), nitric oxide synthase (NOS), glutathione (GSH), total antioxidant capacity (T-AOC), and 8-hydroxy-2'-deoxyguanosine (8-OHdG). Immunohistochemical staining was performed to examine the expression of Kelch-like ECH-associated protein 1 (Keap1) and malondialdehyde (MDA). Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot were employed to determine the mRNA and protein levels, respectively, of factors in the Nrf2/HO-1/NQO1 signaling pathway. ResultsCompared with the control group, the DKD model group showed rises in blood glucose, 24-h urine protein, KI, SCr, BUN, and ALT levels, along with glomerular hypertrophy, renal tubular dilation, thickened basement membrane, mesangial expansion, and collagen deposition. Additionally, the model group showed elevated levels of β2-MG, NGAL, KIM-1, L-FABP, NOS, and 8-OHdG, lowered levels of GSH and T-AOC, up-regulated expression of MDA and Keap1, and down-regulated expression of Nrf2, HO-1, NQO1, and glutamate-cysteine ligase catalytic subunit (GCLC) (P<0.05). Compared with the model group, the semaglutide group and the medium- and high-dose Yishen Tongluo prescription groups showed reductions in blood glucose, 24-h urine protein, KI, SCr, BUN, and ALT levels, along with alleviated pathological injuries in the renal tissue. In addition, the three groups showed lowered levels of β2-MG, NGAL, KIM-1, L-FABP, NOS, and 8-OHdG, elevated levels of GSH and T-AOC, down-regulated expression of MDA and Keap1, and up-regulated expression of Nrf2, HO-1, NQO1, and GCLC (P<0.05). ConclusionYishen Tongluo prescription exerts renoprotective effects in the mouse model of DKD by modulating the Nrf2/HO-1/NQO1 signaling pathway, mitigating oxidative stress, and reducing renal tubular injuries.
2.Mechanism of Yishen Tongluo Formula regulating the TLR4/MyD88/NF-κB signaling pathway to ameliorate pyroptosis in diabetic nephropathy mice
Yifei ZHANG ; Zijing CAO ; Zeyu ZHANG ; Xuehui BAI ; Jingyi TANG ; Junyu XI ; Jiayi WANG ; Yiran XIE ; Yuqi WU ; Xi GUO ; Zhongjie LIU ; Weijing LIU
Journal of Beijing University of Traditional Chinese Medicine 2025;48(1):21-33
Objective:
To investigate the mechanism of Yishen Tongluo Formula in ameliorating renal pyroptosis in diabetic nephropathy mice by regulating the toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear factor-κB (NF-κB) signaling pathway.
Methods:
Sixty C57BL/6 male mice were randomly divided into control (10 mice) and intervention groups (50 mice) using random number table method. The diabetes nephropathy model was established by intraperitoneally injecting streptozotocin(50 mg/kg). After modeling, the intervention group was further divided into model, semaglutide (40 μg/kg), and high-, medium-, and low-dose Yishen Tongluo Formula groups (15.6, 7.8, and 3.9 g/kg, respectively) using random number table method. The high-, medium-, and low-dose Yishen Tongluo Formula groups were administered corresponding doses of medication by gavage, the semaglutide group received a subcutaneous injection of semaglutide injection, and the control group and model groups were administered distilled water by gavage for 12 consecutive weeks. Random blood glucose levels of mice in each group were monitored, and the 24-h urinary protein content was measured using biochemical method every 4 weeks; after treatment, the serum creatinine and urea nitrogen levels were measured using biochemical method. The weight of the kidneys was measured, and the renal index was calculated. Hematoxylin and eosin, periodic acid-Schiff, periodic Schiff-methenamine, and Masson staining were used to observe the pathological changes in renal tissue. An enzyme-linked immunosorbent assay was used to detect urinary β2-microglobulin (β2-MG), neutrophil gelatinase-associated lipocalin (NGAL), and kidney injury molecule-1 (KIM-1) levels. Western blotting and real-time fluorescence PCR were used to detect the relative protein and mRNA expression levels of nucleotide-binding domain leucine-rich repeat and pyrin domain-containing receptor 3 (NLRP3), Caspase-1, gasdermin D (GSDMD), interleukin-1β (IL-1β), and interleukin-18 (IL-18) in renal tissue. Immunohistochemistry was used to detect the proportion of protein staining area of the TLR4, MyD88, and NF-κB in renal tissue.
Results:
Compared with the control group, the random blood glucose, 24-h urinary protein, serum creatinine, urea nitrogen, and renal index of the model group increased, and the urine β2-MG, NGAL, and KIM-1 levels increased. The relative protein and mRNA expression levels of NLRP3, Caspase-1, GSDMD, IL-1β, and IL-18 in renal tissue increased, and the proportion of TLR4, MyD88, and NF-κB protein positive staining areas increased (P<0.05). Pathological changes such as glomerular hypertrophy were observed in the renal tissue of the model group. Compared with the model group, the Yishen Tongluo Formula high-dose group showed a decrease in random blood glucose after 12 weeks of treatment (P<0.05). The Yishen Tongluo Formula high- and medium-dose groups showed a decrease in 24-h urinary protein, creatinine, urea nitrogen, and renal index, as well as decreased β2-MG, NGAL, and KIM-1 levels. NLRP3, Caspase-1, GSDMD, IL-1 β, and IL-18 relative protein and mRNA expression levels were also reduced, and the proportion of TLR4, MyD88, and NF-κB protein positive staining areas was reduced (P<0.05). Pathological damage to renal tissue was ameliorated.
Conclusion
Yishen Tongluo Formula may exert protective renal effects by inhibiting renal pyroptosis and alleviating tubular interstitial injury in diabetic nephropathy mice by regulating the TLR4/MyD88/NF-κB signaling pathway.
3.Structure and Function of GPR126/ADGRG6
Ting-Ting WU ; Si-Qi JIA ; Shu-Zhu CAO ; De-Xin ZHU ; Guo-Chao TANG ; Zhi-Hua SUN ; Xing-Mei DENG ; Hui ZHANG
Progress in Biochemistry and Biophysics 2025;52(2):299-309
GPR126, also known as ADGRG6, is one of the most deeply studied aGPCRs. Initially, GPR126 was thought to be a receptor associated with muscle development and was primarily expressed in the muscular and skeletal systems. With the deepening of research, it was found that GPR126 is expressed in multiple mammalian tissues and organs, and is involved in many biological processes such as embryonic development, nervous system development, and extracellular matrix interactions. Compared with other aGPCRs proteins, GPR126 has a longer N-terminal domain, which can bind to ligands one-to-one and one-to-many. Its N-terminus contains five domains, a CUB (complement C1r/C1s, Uegf, Bmp1) domain, a PTX (Pentraxin) domain, a SEA (Sperm protein, Enterokinase, and Agrin) domain, a hormone binding (HormR) domain, and a conserved GAIN domain. The GAIN domain has a self-shearing function, which is essential for the maturation, stability, transport and function of aGPCRs. Different SEA domains constitute different GPR126 isomers, which can regulate the activation and closure of downstream signaling pathways through conformational changes. GPR126 has a typical aGPCRs seven-transmembrane helical structure, which can be coupled to Gs and Gi, causing cAMP to up- or down-regulation, mediating transmembrane signaling and participating in the regulation of cell proliferation, differentiation and migration. GPR126 is activated in a tethered-stalk peptide agonism or orthosteric agonism, which is mainly manifested by self-proteolysis or conformational changes in the GAIN domain, which mediates the rapid activation or closure of downstream pathways by tethered agonists. In addition to the tethered short stem peptide activation mode, GPR126 also has another allosteric agonism or tunable agonism mode, which is specifically expressed as the GAIN domain does not have self-shearing function in the physiological state, NTF and CTF always maintain the binding state, and the NTF binds to the ligand to cause conformational changes of the receptor, which somehow transmits signals to the GAIN domain in a spatial structure. The GAIN domain can cause the 7TM domain to produce an activated or inhibited signal for signal transduction, For example, type IV collagen interacts with the CUB and PTX domains of GPR126 to activate GPR126 downstream signal transduction. GPR126 has homology of 51.6%-86.9% among different species, with 10 conserved regions between different species, which can be traced back to the oldest metazoans as well as unicellular animals.In terms of diseases, GPR126 dysfunction involves the pathological process of bone, myelin, embryo and other related diseases, and is also closely related to the occurrence and development of malignant tumors such as breast cancer and colon cancer. However, the biological function of GPR126 in various diseases and its potential as a therapeutic target still needs further research. This paper focuses on the structure, interspecies differences and conservatism, signal transduction and biological functions of GPR126, which provides ideas and references for future research on GPR126.
4.Analysis of Differential Compounds of Poria cocos Medicinal Materials by Integrated Qualitative Strategy Based on UPLC-Q-Orbitrap-MS
Jiayuan WANG ; Xiaohan FAN ; Xiaoxiao WEI ; Rong CAO ; Jin WANG ; Lei WANG ; Fengqing XU ; Shunwang HUANG ; Deling WU ; Hongsu ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):148-156
ObjectiveTo establish a rapid analytical method for identifying the differential components in Poria cocos medicinal materials based on ultra performance liquid chromatography-quadrupole-electrostatic field orbital trap high-resolution mass spectrometry(UPLC-Q-Orbitrap-MS), combined with mass defect filtering(MDF) and molecular network integration techniques. MethodsUPLC-Q-Orbitrap-MS was used for MS data acquisition and identification of P. cocos medicinal materials, with the help of MDF for the study of cleavage behavior and structural identification of triterpenoids. According to the similarity of MS/MS fragmentation patterns of each component, global natural product social molecular network(GNPS) was established, and Cytoscape 3.6.1 was used to screen molecular clusters with similar structures and the the structure of main compound classes were identified and confirmed. Multivariate statistical analyses such as principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to screen the differential components of the five P. cocos medicinal materials with the variable importance in the projection(VIP) value>1 and P<0.05 as the criteria. ResultsA total of 66 compounds were identified by database comparison, 8 compounds were newly identified by MDF, 28 compounds were newly identified by GNPS, and a total of 102 chemical compounds were identified, including 43 triterpenoids, 16 saccharides, 26 amino acids and peptides, 3 nucleosides, and 14 other compounds. Triterpenoids were predominant in Poriae Cutis and wild Fushen, amino acids and peptides were the most abundant in Poria and cultivated Fushen, carbohydrates were the most abundant in Poriae Cutis. Type Ⅰ and Ⅱ triterpenoids had higher amounts in Poria and cultivated Fushen, type Ⅲ triterpenoids were more abundant in Poriae Cutis, all four types of triterpenoids were higher in Fushenmu, and type Ⅰ, Ⅱ, and Ⅳ triterpenoids were higher in wild Fushen. A total of 12 common differential chemical constituents were screened, including serine, guanosine, gallic acid, 2-octenal, maltotriose, trametenolic acid, dehydroeburicoic acid, dehydrotrametenolic acid, poricoic acid A, poricoic acid B, poricoic acid E and G, but the relative contents of them varied significantly among different medicinal materials. ConclusionAmong the five P. cocos medicinal materials, the types of constituents are generally similar, but their relative contents differed significantly among these medicinal materials, especially in the distribution of triterpenoids. The integration of UPLC-Q-Orbitrap-MS, MDF and GNPS can provide a reference for the rapid qualitative analysis of other Chinese medicines.
5.Research progress on the influencing factors of psychological distress in patients with coronary heart disease
Xiaotian DUAN ; Hongshi CAO ; Taiyu BI ; Haiyan WANG ; Songyu WANG ; Quantong ZHAO ; Ran WANG ; Chunjing WU
Sichuan Mental Health 2025;38(1):89-96
Coronary heart disease is a chronic and lifelong disease, which places a dual burden on the physiological and psychological well-being of patients, and can easily lead to psychological distress and affect their prognosis and quality of life. This article provides a systematic review, in which the current status, evaluation tools, influencing factors and intervention methods of psychological distress in patients with coronary heart disease are explored, aiming to provide key information beneficial for identifying and preventing psychological distress, and to improve the overall management and treatment effectiveness of coronary heart disease patients. In this paper, 18 articles were included, and the demographic, physiological, psychological and social factors affecting the psychological distress of patients with coronary heart disease were systematically analyzed, thus to provide a deeper understanding of psychological distress and offering references for formulating targeted intervention strategies.
6.Analysis of Differential Compounds of Poria cocos Medicinal Materials by Integrated Qualitative Strategy Based on UPLC-Q-Orbitrap-MS
Jiayuan WANG ; Xiaohan FAN ; Xiaoxiao WEI ; Rong CAO ; Jin WANG ; Lei WANG ; Fengqing XU ; Shunwang HUANG ; Deling WU ; Hongsu ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):148-156
ObjectiveTo establish a rapid analytical method for identifying the differential components in Poria cocos medicinal materials based on ultra performance liquid chromatography-quadrupole-electrostatic field orbital trap high-resolution mass spectrometry(UPLC-Q-Orbitrap-MS), combined with mass defect filtering(MDF) and molecular network integration techniques. MethodsUPLC-Q-Orbitrap-MS was used for MS data acquisition and identification of P. cocos medicinal materials, with the help of MDF for the study of cleavage behavior and structural identification of triterpenoids. According to the similarity of MS/MS fragmentation patterns of each component, global natural product social molecular network(GNPS) was established, and Cytoscape 3.6.1 was used to screen molecular clusters with similar structures and the the structure of main compound classes were identified and confirmed. Multivariate statistical analyses such as principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to screen the differential components of the five P. cocos medicinal materials with the variable importance in the projection(VIP) value>1 and P<0.05 as the criteria. ResultsA total of 66 compounds were identified by database comparison, 8 compounds were newly identified by MDF, 28 compounds were newly identified by GNPS, and a total of 102 chemical compounds were identified, including 43 triterpenoids, 16 saccharides, 26 amino acids and peptides, 3 nucleosides, and 14 other compounds. Triterpenoids were predominant in Poriae Cutis and wild Fushen, amino acids and peptides were the most abundant in Poria and cultivated Fushen, carbohydrates were the most abundant in Poriae Cutis. Type Ⅰ and Ⅱ triterpenoids had higher amounts in Poria and cultivated Fushen, type Ⅲ triterpenoids were more abundant in Poriae Cutis, all four types of triterpenoids were higher in Fushenmu, and type Ⅰ, Ⅱ, and Ⅳ triterpenoids were higher in wild Fushen. A total of 12 common differential chemical constituents were screened, including serine, guanosine, gallic acid, 2-octenal, maltotriose, trametenolic acid, dehydroeburicoic acid, dehydrotrametenolic acid, poricoic acid A, poricoic acid B, poricoic acid E and G, but the relative contents of them varied significantly among different medicinal materials. ConclusionAmong the five P. cocos medicinal materials, the types of constituents are generally similar, but their relative contents differed significantly among these medicinal materials, especially in the distribution of triterpenoids. The integration of UPLC-Q-Orbitrap-MS, MDF and GNPS can provide a reference for the rapid qualitative analysis of other Chinese medicines.
7.Pharmacological effects of Yindan Pinggan capsules in treating intrahepatic cholestasis
Shu-xin CAO ; Feng HUANG ; Fang WU ; Rong-rong HE
Acta Pharmaceutica Sinica 2025;60(2):417-426
This study aimed to investigate the therapeutic effect of Yindan Pinggan capsules (YDPG) on intrahepatic cholestasis (IHC) through animal experiments, while utilizing network pharmacology and molecular docking techniques to explore its potential mechanisms. Initially, the therapeutic effect of YDPG on an
8.Near-infrared photoresponsive h-PCuNF nanoparticles mediate multimodal therapeutics against malignant tumors
Yaodong CHEN ; Jiayi REN ; Jingwei CAO ; Wenwen FAN ; Wu CHEN
Chinese Journal of Tissue Engineering Research 2025;29(4):780-788
BACKGROUND:Precision therapy based on multifunctional nanomaterials is a novel therapeutic model for malignancies that can integrate multiple imaging and therapeutic models into one nanoscale platform to achieve visual combination treatment. OBJECTIVE:To prepare novel nanoparticles loaded with Cu2(OH)PO4 nanoparticles(CuNPs)and nuciferine(NF)(h-PCuNF),and to explore their ability to mediate combined photothermal therapy/photodynamic therapy/chemodynamic therapy/chemotherapy for malignancy. METHODS:The h-PCuNF nanoparticles were synthesized through a double-emulsion procedure,through which the CuNPs and NF were loaded into the shell of hollow poly(lactic-co-glycolic)acid nanocarriers.The morphology,structure,particle size,and zeta potential of the h-PCuNF nanoparticles were characterized.In deionized water,the magnetic resonance imaging and photothermal conversion performances of the h-PCuNF nanoparticles,as well as their capability to implement reactive oxygen species production by mediating photocatalysis and Fenton-like reactions,were evaluated.In liver malignant tumor cell line HepG2 cells,the effectiveness of the photothermal therapy/photodynamic therapy/chemodynamic therapy/chemotherapy combination therapy mediated by the nanoparticles was detected by employing fluorescence imaging and MTT assay. RESULTS AND CONCLUSION:(1)The h-PCuNF nanoparticles possessed a hollow spherical structure in which the CuNPs(drug loading rate and encapsulation rate were 26.3%and 63.2%,respectively)and NF(drug loading rate and encapsulation rate were 11.0%and 52.6%,respectively)were loaded into the shell.The average particle size of the h-PCuNF nanoparticles was(309.2±10.0)nm,while the zeta potential was determined to be(-12.5±0.9)mV.In physiological environments,the nanoparticles possess favorable suspension stability.(2)In deionized water,the h-PCuNF nanoparticles could markedly enhance T1-weighted magnetic resonance imaging images.The h-PCuNF nanoparticles showed remarkable photothermal conversion and photocatalytic reactive oxygen species generation capabilities under near infrared laser irradiation.In addition,the h-PCuNF nanoparticles could consume glutathione and mediate Fenton-like reactions to produce·OH.(3)The h-PCuNF nanoparticles could be taken up by HepG2 tumor cells and were mainly distributed in the cytoplasm.The synergistic therapeutic effect was demonstrated after the nanoparticles were activated by near infrared laser irradiation,because CuNPs mediated photothermal therapy/photodynamic therapy/chemodynamic therapy and NF mediated chemotherapy could synergistically eliminate the tumor cells.
9.Causal relationship between immune cells and knee osteoarthritis:a two-sample bi-directional Mendelian randomization analysis
Guangtao WU ; Gang QIN ; Kaiyi HE ; Yidong FAN ; Weicai LI ; Baogang ZHU ; Ying CAO
Chinese Journal of Tissue Engineering Research 2025;29(5):1081-1090
BACKGROUND:Knee osteoarthritis(KOA)is a common chronic inflammatory disease that causes damage to joint cartilage and surrounding tissues.Immune cells play an important role in the immune-inflammatory response in knee osteoarthritis,but the specific mechanisms involved are still not fully understood. OBJECTIVE:To evaluate the potential causal relationship between 731 immune cell phenotypes and the risk of knee osteoarthritis using Mendelian randomization. METHODS:Summary statistics of genome-wide association studies(GWAS)for 731 immune cell phenotypes(from GCST0001391 to GCST0002121)obtained from the GWAS catalog and GWAS data for knee osteoarthritis from the IEUGWAS database(ebi-a-GCST007090)were used.Inverse variance-weighted method,MR-Egger regression,weighted median method,weighted mode method,and simple mode method were employed to investigate the causal relationship between immune cells and knee osteoarthritis.Sensitivity analyses were conducted to assess the reliability of the Mendelian randomization results.Reverse Mendelian randomization analysis was also performed using the same methods. RESULTS AND CONCLUSION:The forward MR analysis indicated significant causal relationships(FDR<0.20)between knee osteoarthritis and four immune cell phenotypes,namely CD27 on CD24+CD27+in B cells(OR=1.026,P=0.000 26,Pfdr=0.18),CD33 on CD33dim HLA DR-in myeloid cells(OR=1.014,P=0.000 50,Pfdr=0.18),and CD45RA+CD28-CD8br%CD8br in Treg cells(OR=1.001,P=0.000 78,Pfdr=0.18),and PDL-1 on monocytes in mononuclear cells(OR=0.952,P=0.000 98,Pfdr=0.18).These immune cell phenotypes showed direct positive or negative causal associations with the risk of knee osteoarthritis.Reverse Mendelian randomization analysis revealed no significant causal relationships(FDR<0.20)between knee osteoarthritis as exposure and any of the 731 immune cell phenotypes.The results of sensitivity analysis show that the P-values of the Cochran's Q test and the MR-Egger regression method for bidirectional Mendelian randomization were both greater than 0.05,indicating that there is no significant heterogeneity and pleiotropy in the causal effect analysis between immune cell phenotypes and knee osteoarthritis.To conclude,there may be four potential causal relationships between immune cell phenotypes,such as CD27 on CD24+CD27+cells,CD33 on CD33dim HLA DR-cells,CD45RA+CD28-CD8br%CD8br cells,and PDL-1 on monocytes,and knee osteoarthritis.These findings provide valuable clues for studying the biological mechanisms of knee osteoarthritis and exploring early prevention and treatment strategies.They also offer new directions for the development of intervention drugs.
10.Establishment of an Intestinal Fibrosis Model Associated with Inflammatory Bowel Disease in VDR-/- Mice Induced by Helicobacter hepaticus Infection and Mechanism Exploration
Zhihao WU ; Shuyang CAO ; Zhengyu ZHOU
Laboratory Animal and Comparative Medicine 2025;45(1):37-46
ObjectiveTo employ Helicobacter hepaticus (H.hepaticus, H.h) to induce intestinal fibrosis in vitamin D receptor deletion (VDR-/-) mice, thereby establishing a model of inflammatory bowel disease to investigate its pathological characteristics and underlying mechanisms. MethodsFive male WT and five male VDR-/- mice were orally administered a suspension containing 2×108 CFU of H.hepaticus (referred to as the WT+H.h group and the VDR-/-+H.h group, respectively), with treatments occurring every other day for three administrations. Concurrently, two uninfected control groups were established, consisting of five WT and five VDR-/- mice, which were administered an equivalent volume of PBS. Seven days after the final administration, the infection status of the mice was assessed, and their body weight was recorded weekly. At the 16th week post-infection, the mice were dissected, and the length of the colon tissue was measured, with fecal moisture content analyzed. The colon tissue was partitioned into four parts: one for paraffin embedding for HE, alcian blue-periodic acid Schiff (AB-PAS), Masson's trichrome staining, and immunohistochemical analysis; one for DNA extraction to evaluate the colonization levels of H.hepaticus through real-time fluorescent quantitative polymerase chain reaction (RFQ-PCR), thereby assessing the impact of the infection; one for RNA extraction to analyze cytokine expression via reverse transcription-PCR (RT-PCR); and one for protein extraction to measure the expression levels of alpha smooth muscle actin (α-SMA) and interleukin (IL)-33 using Western blotting. Results All mice in the infected groups successfully were infected with H. hepaticus after three oral gavages. Compared to VDR-/- control group, VDR-/- mice exhibited significant weight loss (P<0.05), intestinal hemorrhage, and higher fecal water content after 16 weeks of H. hepaticus infection than the uninfected control group and the WT+H.h group (P<0.05). Compared to the WT+H.h group, HE staining of the VDR-/-+H.h group showed inflammatory cell infiltration, AB-PAS staining revealed irregular atrophy of intestinal glands and reduced acini, and Masson staining showed increased collagen area. RT-PCR demonstrated that the transcription levels of inflammation and fibrosis-related genes, including IL-6, IL-33, tumor necrosis factor-α (TNF-α), and α-SMA (P < 0.000 1), were significantly upregulated in the colon tissues of VDR-/-+H.h group. Additionally, immunohistochemical analysis and Western blotting showed that the protein expression levels of IL-33 and α-SMA were markedly increased (P<0.001) in the VDR-/-+H.h group. ConclusionVDR-/- mice infected with H.hepaticus exhibit more severe inflammatory responses, including mucosal inflammatory infiltration, impaired mucosal tissue function, and collagen deposition, indicating successful construction of the inflammatory bowel disease model. Further research suggests that VDR deficiency may exacerbate the intestinal fibrosis process associated with inflammatory bowel disease by affecting IL-33 expression.


Result Analysis
Print
Save
E-mail