1.Study on Compatibility and Efficacy of Blood-activating Herb Pairs Based on Graph Convolution Network
Jingai WANG ; Qikai NIU ; Wenjing ZONG ; Ziling ZENG ; Siwei TIAN ; Siqi ZHANG ; Yuwen ZHAO ; Huamin ZHANG ; Bingjie HUO ; Bing LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):228-234
ObjectiveThis study aims to develop a prediction model for the compatibility of Chinese medicinal pairs based on Graph Convolutional Networks (GCN), named HC-GCN. The model integrates the properties of herbs with modern pharmacological mechanisms to predict pairs with specific therapeutic effects. It serves as a demonstration by applying the model to predict and validate the efficacy of blood-activating herb pairs. MethodsThe training dataset for herb pair prediction was constructed by systematically collecting commonly used herb pairs along with their characteristic data, including Qi, flavor, meridian tropism, and target genes. Integrating traditional characteristics of herb with modern bioinformatics, we developed an efficacy-oriented herb pair compatibility prediction model (HC-GCN) using graph convolutional networks (GCN). This model leverages machine learning to capture the complex relationships in herb pair compatibility, weighted by efficacy features. The performance of the HC-GCN model was evaluated using accuracy (ACC), recall, precision, F1 score (F1), and area under the ROC curve (AUC). Its predictive effectiveness was then compared to five other machine learning models: eXtreme Gradient Boosting (XGBoost), logistic regression (LR), Naive Bayes, K-nearest neighbor (KNN), and support vector machine (SVM). ResultsUsing herb pairs with blood-activating effects as a demonstration, a prediction model was constructed based on a foundational dataset of 46 blood-activating herb pairs, incorporating their Qi, flavor, meridian tropism, and target gene characteristics. The HC-GCN model outperforms other commonly used machine learning models in key performance metrics, including ACC, recall, precision, F1 score, and AUC. Through the predictive analysis of the HC-GCN model, 60 herb pairs with blood-activating effects were successfully identified. Among of these potential herb pairs, 44 include at least one herb with blood-activating effects. ConclusionIn this study, we established an efficacy-oriented compatibility prediction model for herb pairs based on GCN by integrating the unique characteristics of traditional herbs with modern pharmacological mechanisms. This model demonstrated high predictive performance, offering a novel approach for the intelligent screening and optimization of traditional Chinese medicine prescriptions, as well as their clinical applications.
2.Association between polymorphisms in the glucose metabolism and lipid regulation genes with metabolic abnormalities in childhood obesity
Chinese Journal of School Health 2025;46(6):888-893
Objective:
To explore the association between CDKAL1 rs35261542, FAIM2 rs 3205718, and VGLL4 rs 2574704 polymorphisms with childhood obesity and related metabolic phenotypes to provide evidence for personalized prevention and management strategies.
Methods:
Based on the 2023 Long term Nutritional Health Effects of Early Childhood Nutrition Package Intervention project, the study enrolled 1 078 children aged 5-7 years from four counties in Henan (Songxian and Ruyang countries) and Guizhou (Guiding and Fuquan countries) provinces. Using BMI Z scores, 87 overweight and obese(OVOB) children were selected and matched by sex, age, and BMI Z score with 117 normal weight controls. Participants were further stratified into four metabolic phenotype groups: metabolically healthy normal weight (MHNW, n =51), metabolically unhealthy normal weight (MUNW, n =66), metabolically healthy obesity (MHO, n =31) and metabolically unhealthy obesity (MUO, n =56) based on four conventional cardiometabolic risk factor (CR) criteria. Data were collected through questionnaires, anthropometric measurements, serum biochemical tests, and KASP genotyping. The distribution of three genetic polymorphisms ( CDKAL1 rs35261542, FAIM2 rs3205718, VGLL4 rs 2574704) across metabolic subgroups was analyzed. Multivariate Logistic regression models assessed associations between these polymorphisms and obesity/metabolic phenotypes.
Results:
Multivariate Logistic regression analysis showed that Homozygous mutant AA genotype of CDKAL1 rs 35261542 was positively associated with OVOB( OR =3.63), MHO ( OR =11.04), MUO ( OR = 4.88 ) ( P <0.05). Homozygous TT genotype of FAIM2 rs 3205718 increased OVOB risk ( OR =4.44, P <0.05) but showed no association with metabolic phenotypes ( P >0.05). Homozygous mutant TT of VGLL4 rs 2574704 reduced the risks of MHO and MUO ( OR = 0.30, 0.24, P <0.05). Cumulative genetic effects analysis demonstrated carriers of 1 or 2 risk genotypes of rs 35261542 and rs 3205718 had progressively higher OVOB risk ( OR =2.53, 20.79), and the combination of rs 35261542 and rs 2574704 increased risks for both MHO ( OR =8.50) and MUO ( OR =5.00) ( P <0.05).
Conclusions
The AA genotype of rs 35261542 ( CDKAL1 ) positively correlates with childhood obesity and metabolic abnormalities. The TT genotype of rs 3205718 ( FAIM 2) increases obesity risk but not metabolic phenotypes. The TT genotype of rs 2574704 ( VGLL 4) shows protective effects against metabolic dysfunction. Risk genotypes exhibit dosedependent cumulative effects on obesity and metabolic outcomes.
3.Timing, surgical approach, and uterine manipulator use in total hysterectomy after loop electrosurgical excision procedure: Implications for perioperative risks in patients with high-grade squamous intraepithelial lesion.
Xiaoyu HOU ; Junyang LI ; Bingjie MEI ; Jiao PEI ; Mingfeng FENG ; Hong LIU ; Guonan ZHANG ; Dengfeng WANG
Chinese Medical Journal 2025;138(20):2672-2674
4.Simulation analysis of adaptability of large airborne negative pressure isolation cabin to aviation conditions.
Lei GUO ; Falin LI ; Lang JIANG ; Haibo DU ; Bingjie XUE ; Wei YONG ; Yuanyuan JIANG ; Muzhe ZHANG
Journal of Biomedical Engineering 2025;42(4):775-781
In order to solve the problems of difficult test, high cost and long cycle in the development of large-scale airborne negative pressure isolation system, the simulation analysis of negative pressure response characteristics is carried out around various aviation conditions such as aircraft ascending, leveling and descending, especially rapid decompression, based on the computational fluid dynamics (CFD) method. The results showed that the isolation cabin could achieve -50 Pa pressure difference environment and form a certain pressure gradient. The exhaust air volume reached the maximum value in the early stage of the aircraft's ascent, and gradually decreased with the increase of altitude until it was level flying. In the process of aircraft descent, the exhaust fan could theoretically maintain a pressure difference far below -50 Pa without working; Under the special condition of rapid pressure loss, it was difficult to deal with the rapid change of low pressure only by the exhaust fan, so it was necessary to design safety valve and other anti-leakage measures in the isolation cabin structure. Therefore, the initial stage of aircraft ascent is the key stage for the adjustment and control of the negative pressure isolation system. By controlling the exhaust air volume and adjusting parameters, it can adapt to the change of low pressure under normal flight conditions, form a relatively stable negative pressure environment, and meet the needs of biological control, isolation and transport.
Aircraft
;
Computer Simulation
;
Aviation/instrumentation*
;
Humans
;
Hydrodynamics
;
Air Pressure
;
Equipment Design
;
Pressure
5.Yeast-two-hybrid based high-throughput screening to discover SARS-CoV-2 fusion inhibitors by targeting the HR1/HR2 interaction.
Jing ZHANG ; Dongsheng LI ; Wenwen ZHOU ; Chao LIU ; Peirong WANG ; Baoqing YOU ; Bingjie SU ; Keyu GUO ; Wenjing SHI ; Tin Mong TIMOTHY YUNG ; Richard Yi TSUN KAO ; Peng GAO ; Yan LI ; Shuyi SI
Acta Pharmaceutica Sinica B 2025;15(9):4829-4843
The continuous emergence of SARS-CoV-2 variants as well as other potential future coronavirus has challenged the effectiveness of current COVID-19 vaccines. Therefore, there remains a need for alternative antivirals that target processes less susceptible to mutations, such as the formation of six-helix bundle (6-HB) during the viral fusion step of host cell entry. In this study, a novel high-throughput screening (HTS) assay employing a yeast-two-hybrid (Y2H) system was established to identify inhibitors of HR1/HR2 interaction. The compound IMB-9C, which achieved single-digit micromolar inhibition of SARS-CoV-2 and its Omicron variants with low cytotoxicity, was selected. IMB-9C effectively blocks the HR1/HR2 interaction in vitro and inhibits SARS-CoV-2-S-mediated cell-cell fusion. It binds to both HR1 and HR2 through non-covalent interaction and influences the secondary structure of HR1/HR2 complex. In addition, virtual docking and site-mutagenesis results suggest that amino acid residues A930, I931, K933, T941, and L945 are critical for IMB-9C binding to HR1. Collectively, in this study, we have developed a novel screening method for HR1/HR2 interaction inhibitors and identified IMB-9C as a potential antiviral small molecule against COVID-19 and its variants.
6.Status quo and influencing factors of amputation decision-making dilemma in patients with diabetic foot
Yanmei WANG ; Meijun WANG ; Cancan CAO ; Bingjie WANG ; Qianwen CHAI ; Minghui LU ; Li WEI
Chinese Journal of Modern Nursing 2024;30(33):4579-4584
Objective:To explore the current situation and influencing factors of amputation decision-making dilemma of diabetic foot patients.Methods:From July to December 2023, 200 patients with diabetic foot in the Tianjin Medical University General Hospital and Tianjin Medical University Chu Hsien-I Memorial Hospital were selected as study subjects by convenience sampling. General Information Questionnaire, Decisional Conflict Scale (DCS), Family APGAR Index, and Hospital Anxiety and Depression Scale were used to conduct a cross-sectional survey. Pearson correlation was used to analyze the correlation between diabetic foot patients' amputation decision-making dilemma and family caring, anxiety and depression, and multiple linear regression was used to analyze the influencing factors of diabetic foot patients' amputation decision-making dilemma.Results:A total of 200 questionnaires were distributed, and 180 valid questionnaires were collected, with a valid response rate of 90.0% (180/200). The DCS score of 180 patients with diabetic foot was (30.04±9.77), 76.7% (138/180) patients scored ≥25.0, and they had decision-making dilemma, and 25.0% (45/180) of patients scored ≥37.5, indicating decision-making delay. Multiple linear regression analysis showed that occupational status, diabetes course, family caring, anxiety and depression were the influencing factors of amputation decision-making dilemma of diabetic foot patients ( P<0.05) . Conclusions:Diabetic foot patients face certain dilemmas in the process of amputation decision-making. Clinical medical and nursing staff should reasonably evaluate the patient's occupational status, disease course, family caring, and psychological state, and develop personalized decision support strategies to improve decision quality and prevent changes in the patient's condition caused by delayed decision-making.
7.Clinical research progress of traditional Chinese medicine in the treatment of GERD with anxiety and depression by regulating brain-gut axis
Yuqing WANG ; Zuomei LUO ; Nan CHEN ; Bingjie HAN ; Liqun LI ; Lijian LIU ; Guangwen CHEN ; Chengning YANG
China Pharmacy 2024;35(18):2315-2320
Gastroesophageal reflux disease (GERD) is a gastrointestinal motility disorder characterized by the reflux of gastric contents into the esophagus, leading to symptoms such as acid reflux and heartburn. The incidence of GERD is closely associated with psychological disorders, including anxiety and depression. The brain-gut axis, serving as a mediator of the bidirectional connection between the brain and the gastrointestinal tract, plays a crucial role in the occurrence and development of GERD with anxiety and depression. Various therapeutic approaches, including compound Chinese medicine internal therapy (such as Pingchong jiangni decoction, Tiaozhong huashi decoction, etc.), combination therapy of internal and external Chinese medicine (such as Lianzhi xiere decoction combined with acupoint application, acupuncture at the back segment of governor vessel plus Chinese medication of soothing the liver and gallbladder, etc.), and combination therapy of internal Chinese and western medicine (including Jianpi shugan decoction combined with rabeprazole, rabeprazole combined with Jianzhong jiangni decoction, etc.), have been shown to regulate brain-gut peptides, intestinal flora, inflammatory factors and gastrointestinal hormones, thereby effectively alleviating GERD symptoms, anxiety and depression, and enhancing patients’ quality of life.
8.Exploring Mechanism of Neferine in Promoting Vascular Regeneration Against Cerebral Ischemia Based on Mitochondrial MCU Channel
Qiman ZHANG ; Yanhua GAO ; Wenjie WU ; Wei YANG ; Chen LIU ; Shuting LI ; Bingjie CAI ; Jialin YANG ; Ying ZHANG ; Jing MA ; Shaojing LI
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(24):103-113
ObjectiveTo investigate the mechanism of neferine(Nef) in promoting vascular regeneration against cerebral ischemia through modulation of mitochondrial calcium uniporter(MCU) ion channel. MethodTaking the area of subintestinal vessels in microvascular deficiency zebrafish as an index, the vascular regenerative efficacy of Nef was evaluated, and the median effective concentration(EC50) was calculated. Rats were randomly divided into a sham operation group, a model group, a positive drug group(butylphthalide, 6 mg·kg-1), and Nef low, medium, and high dose groups(0.125, 0.625, 3.125 μg·kg-1). Except for the sham operation group, the middle cerebral artery occlusion(MCAO) model was established in other groups. After modeling, the groups were administered the corresponding dose of drugs by gavage, while the sham operation and model groups received equal volumes of saline, once a day for 7 consecutive days. Neurobehavioral scores were assessed for each group of rats, and the infarct rate of ischemic brain tissue was calculated by 2,3,5-triphenyltetrazolium chloride(TTC) staining. The regional cerebral blood flow(rCBF) of each group was measured using a speckle contrast imaging. Immunofluorescence and Western blot were conducted to detect the expression of vascular endothelial growth factor(VEGF), platelet endothelial cell adhesion molecule-1(CD31), and hypoxia-inducible factor-1α(HIF-1α) proteins in each group. Human umbilical vein endothelial cells(HUVECs) were divided into the normal group, model group, positive drug group(astragaloside Ⅳ, 10 μmol·L-1), and Nef group (32 nmol·L-1). In the verification of mitochondrial protection of Nef and its mechanism in promoting vascular regeneration, the spermine(MCU agonist) and Nef+spermine group were added. HUVECs model of oxygen-glucose deprivation(OGD) was established in all groups except the normal group, the cell viability was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay, and cell migration ability was evaluated through scratch and tube formation assays. Fluorescent probes(Rhod-2 AM, Fluo-3 AM, JC-1, Calcein AM) and a cellular energy metabolism analyzer were used to analyze the mitochondrial protective effects of Nef. Molecular docking was performed to predict the binding ability of Nef with MCU and HIF-1α, and Western blot was used to detect the effects of Nef on the protein expressions of MCU, B-cell lymphoma-2 associated X protein(Bax), Caspase-3 and HIF-1α in the OGD model HUVECs. ResultThe results of vascular regeneration in microvascular deficiency zebrafish showed that compared to the normal group, the area of subintestinal vessels in the model group significantly decreased(P<0.01). Compared to the model group, different concentrations of Nef could significantly increase the area of subintestinal vessels(P<0.01), with the maximum tolerated concentration of 10.24 μmol·L-1 and the EC50 of 0.23 μmol·L-1. Anti-cerebral ischemia results on MCAO rats showed that compared to the sham operation group, the model group had a significant decrease in rCBF and a significant increase in infarct rate, while CD31 expression significantly decreased(P<0.01), and VEGF and HIF-1α protein expressions significantly increased(P<0.05). Compared to the model group, the treated groups showed significant increases in rCBF, significant reductions in infarct volume, and significant increases in CD31, VEGF, and HIF-1α protein expression(P<0.01). Cell experiment results showed that compared to the normal group, the model group had decreased cell viability and migration ability, increased intracellular Ca2+ and mitochondrial Ca2+ levels, reduced mitochondrial permeability transition pore(MPTP) opening, and decreased mitochondrial energy metabolism capability, with increased expressions of MCU, Bax, Caspase-3 and HIF-1α proteins(P<0.05, P<0.01). Compared to the model group, the Nef group showed increased cell viability and migration ability, decreased intracellular Ca2+ and mitochondrial Ca2+ levels, increased MPTP opening, enhanced mitochondrial energy metabolism capability, decreased expressions of MCU, Bax and Caspase-3 proteins, and increased HIF-1α protein expression(P<0.05, P<0.01). ConclusionNef can stabilize mitochondrial membrane potential and inhibit mitochondrial apoptosis. By down-regulating the expression of MCU, it suppresses the activation of intracellular Bax and Caspase-3 while activating the HIF-1α signaling pathway, enhancing the expression of VEGF and CD31, thereby promoting vascular regeneration to treat ischemic brain injury.
9.Traditional Chinese Medicine Intervention in Sepsis Based on TLR4 Signaling Pathway: A Review
Jing YAN ; Sheng XIE ; Laian GE ; Guangyao WANG ; Zhu LIU ; Bingjie HAN ; Yaoxuan ZENG ; Jinchan PENG ; Jincheng QIAN ; Liqun LI
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(19):282-291
Sepsis is one of the common severe diseases caused by the dysregulated host response to infection, which seriously threatens the life and health of human beings all over the world. The incidence and mortality of the disease are extremely high, and it has always been an urgent problem to be solved in the field of acute and critical diseases. At present, anti-infection, fluid resuscitation, mechanical ventilation and other programs are most used in clinic to treat sepsis, but their poor prognosis and high cost and other issues remain to be resolved. Therefore, it is necessary to explore a new, efficient, safe and inexpensive drug and treatment model at this stage. The treatment of traditional Chinese medicine (TCM) is based on syndrome differentiation and holistic concept. It can effectively regulate the progression of sepsis, maintain the homeostasis of the body, and has fewer adverse reactions. It has achieved good clinical results. In recent years, a large number of studies have shown that TCM can reduce the inflammatory response by regulating the Toll-like receptor 4(TLR4) signaling pathway, thereby reducing the severity and mortality of sepsis patients. However, there is still a lack of systematic exposition of TCM regulating TLR4 signaling pathway in the treatment of sepsis. Therefore, this article summarizes the relationship between TLR4 signaling pathway and sepsis and the mechanism of TCM in the disease by searching and consulting relevant literature in recent years. It is found that some Chinese medicine monomers and active ingredients, Chinese medicine compounds and Chinese medicine preparations can effectively reduce systemic inflammatory response, repair organ damage and improve the prognosis of sepsis by inhibiting the activation of TLR4 signaling pathway. However, due to various limitations, some studies have directly focused on the differential expression and function of TLR4, ignoring the downstream molecular expression and phenotypic effects of TLR4. The alternative mechanism, relationship and specific molecular mechanism of the pathway are still unclear. There are problems such as unclear pharmacokinetics and unclear mechanism in the pro- and anti-inflammatory balance, which need to be further studied and explored in order to provide new ideas for the potential treatment and drug development for sepsis.
10.Traditional Chinese Medicine Intervention in Acute Pancreatitis Based on TLR4 Signaling Pathway: A Review
Zuomei LUO ; Yuqing WANG ; Nan CHEN ; Bingjie HAN ; Liqun LI ; Lijian LIU ; Guangwen CHEN ; Chengning YANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(9):263-271
Acute pancreatitis (AP) is one of the most clinically common acute digestive disorders characterized by quick onset,rapid progression,severe condition,and high mortality. If the disease is not timely intervened in the early stage,it can develop into severe AP in the later stage,which damages the long-term quality of life and brings serious economic burden to patients and their families. However, the pathogenesis of this disease is complex and has not been fully explained. The generation and development of AP is closely related to many signaling pathways. Among them,Toll-like receptor 4(TLR4),as a transmembrane signal transduction receptor,can mediate immune response and inflammatory response,and play a key role in the occurrence and development of AP. Traditional Chinese medicine(TCM)can regulate the TLR4 signaling pathway with multiple targets,multiple effects,and multiple administration methods to inhibit inflammatory response,and effectively intervene in the progression of AP, which has gradually become a new craze for preventing and treating AP. Many studies have shown that TCM has obvious advantages in the prevention and treatment of AP. It can effectively treat AP by regulating TLR4 signaling pathway,strengthening immune resistance and defense,and inhibiting inflammatory response. Despite of the research progress,there is still a lack of comprehensive review on TCM regulation of TLR4 signaling pathway in the treatment of AP. Therefore,the literature on TCM regulation of TLR4 signaling pathway published in recent years was systematically reviewed and elaborated,aiming to provide new ideas for the treatment of AP and further drug development.


Result Analysis
Print
Save
E-mail