1.Assessment of secondary school indoor air quality
Suvd B ; Erdenetsetseg D ; Oyun-Erdene O ; Zul A ; Buuveidulam A ; Bilguun D ; Chinzorig B ; Suvd S ; Bayarbold D ; Burmaajav B
Mongolian Medical Sciences 2022;200(2):24-32
Introduction:
During this pandemic, overcrowding in classroom caused by a lack of educational facilities and poor indoor air quality are the main causes of respiratory diseases among children and adolescents. Therefore, it is essential to measure and assess the indoor air quality where children spend extended periods of time such as school.
Materials and methods:
This study covered four schools with old buildings and four schools with new buildings in Bayanzurkh, Sukhbaatar, Khan-Uul, Chingeltei district of Ulaanbaatar. We collected PM10 and PM2.5, carbon dioxide, air temperature, humidity, and microbiological count from chosen classrooms and compared to the MNS4585:2016 standard. SPSS-24 was used to do statistical analysis on the information gathered during the evaluation.
Results and Discussion:
The 24-hour average PM2.5 concentration was 64.3 (95% CI: 64.1-64.5) mcg/m3, which was 4.3 times higher than the WHO guideline value and 1.3 times higher than the MNS4585:2016 standard. The 24-hour average PM10 concentration was 85.3 (95 % CI: 85.1-85.6) mcg/m3, which is 1.9 times higher than WHO guideline value. In older school buildings, the 24-hour average PM2.5 concentration was 5.6 times higher than the WHO guideline value and 1.7 times higher than the MNS4585:2016; the average PM10 concentration was 2.8 times higher than the WHO guideline value and 1.3 times higher than the MNS4585:2016. The air temperature and carbon dioxide concentration in classroom was met the MNS4585: 2016. The average relative humidity of all schools is 24.2±6.5%, which is 14-16% lower than the MNS4585: 2016.
Conclusion
The indoor air quality of the school in new and old buildings was similar poor, therefore a variety of steps are needed to improve it.
2.Chronic kidney disease and serum NT-proBNP level
Sodgerel B ; Anudari I ; Buyandelger J ; Pilmaa Yo ; Gantogtokh D ; Yesukhei E ; Bilguun E ; Nyam-Erdene N ; Yundendash D ; Munkhbayar S ; Bolormaa Do ; Sarangerel Ga ; Munkhzul D ; Batbold B ; Sodnomtsogt L
Mongolian Medical Sciences 2024;210(4):9-17
Background:
Serum natriuretic peptide (NT-proBNP) is a critical biomarker for diagnosing left ventricular
dysfunction. Heart failure is the leading cause of mortality in chronic kidney disease (CKD),
emphasizing the need for its early detection and prognosis.
Objective:
This study aimed to determine the serum NT-proBNP levels in participants with CKD and
establish a cut-off value for predicting heart failure.
Methods:
A descriptive cross-sectional study was conducted from April 1 to July 1,2024. This study
received approval from the Ethics Committee of the Institute of Medical Sciences (Approval
No.24/01). A total of 117 CKD patients hospitalized in the Nephrology and Endocrinology
Department of the third state hospital were enrolled based on predefined inclusion and
exclusion criteria. Data were collected using questionnaires, laboratory and heart ultrasound
test results. Serum NT-proBNP levels were measured using a rapid immunofluorescence
quantitative analyzer. Data were analyzed with SPSS 26.0.
Results:
The mean age of the 117 participants was 57.9 ± 14.7 years, with 51.3% being male. The
mean serum NT-proBNP level was 7686 ± 12149 pg/mL. Statistically significant differences
were observed in serum creatinine, sodium, calcium, CKD stage, and arterial hypertension
between genders (p<0.05). NT-proBNP levels in hemodialysis patients differed significantly
between heart failure and non-heart failure groups (p<0.05). Significant differences were
also found in hemoglobin, serum albumin, NT-proBNP levels, and CKD stages (p<0.05).
NT-proBNP correlated significantly with risk factors such as hemodialysis, diabetes, and decreased systolic blood pressure (p<0.0001). A weak inverse relationship was noted
between systolic blood pressure and NT-proBNP (R² = 0.16). The NT-proBNP cut-off value
for predicting heart failure was 3027 pg/mL, with an AUC of 61.7% (sensitivity: 74.5%,
specificity: 55%).
Conclusion
Serum NT-proBNP levels are elevated in CKD patients regardless of heart
failure. The established cut-off value for NT-proBNP in CKD patients to detect heart failure
was 3027 pg/mL, with moderate diagnostic utility (AUC = 61.7%).
3.Involvement of Vitamin D in Immune system
Baljinnyam T ; Batchimeg B ; Zolzaya D ; Ganchimeg D ; Lkhaasuren N ; Oyungerel G ; Munkhtsetseg B ; Khaliun M ; Khulan U ; Bilguun E ; Batkhishig M ; Tulgaa L ; Bilegtsaikhan Ts ; Munkhbayar S ; Munkhtuvshin N ; Munkhbat B
Mongolian Medical Sciences 2020;192(2):51-59
Research of function of vitamin D on immune system has been studying since the study revealed
that vitamin D receptor is expressed on the surface of the immune cells. 1,2-dihydroxyvitamin
D3 [1,25(OH)2D], physiologically active form, can be generated through hydroxylation of
25-hydroxyvitamin D3 [25(OH)D], inactive form of vitamin D, in a liver, connecting with specific VDR
make biological action. Vitamin D make different biological actions depends on connecting with
different immunological cells. Some studies indicated that Vitamin D plays pivotal role in antibacterial
innate immune responses through regulating reaction of the main cells as macrophages and dendritic
cells. Moreover, calcitriol, the active form of vitamin D, is connected with VDRE, modulates the innate
immune response through directly inducing expression of catelicithin and β-defensin as antimicrobial
peptides, reducing secretion of IL-1b, IL-6, TNF-a, RANKL, COX-2 as proinflammatory cytokines and
increasing production of IL-10, an anti-inflammatory cytokine. Vitamin D plays in proliferation and
differentiation of T and B cells and regulates the activities of over 500 genes. Vitamin D differently
impacts on per se stages of T cells’ proliferation. Vitamin D indirectly mitigates the differentiation from
immature B cells to plasma B cells while it directly impacts on regulation of overloaded production of
antibodies in plasma B cells. In conclusion, vitamin D modulates the innate- and adaptive immune
response through regulation on activation of APCells, proliferation and differentiation of immune cells,
secretion of some antibacterial peptides.
4.The effects of Particulate matter (PМ2.5) pollutants on cancer cells in in vitro model
Baljinnyam T ; Bilguun E ; Batchimeg B ; Zolzaya D ; Lkhaasuren N ; Oyungerel G ; Munkhtsetseg B ; Khaliun M ; Khulan U ; Batkhishig M ; Uranbileg U ; Sonomdagva Ch ; Bilegtsaikhan Ts ; Munkhbayar S ; Munkhtuvshin N ; Erkhembulgan P
Mongolian Medical Sciences 2021;197(3):17-25
Introduction:
Air pollution has become one of the major problems in socio-economic and health
issues in Mongolia. Among the various hazards of particulate matter (PM) pollutants, microorganisms
in PM2.5 and PM10 are thought to be responsible for various allergies and for the spread of respiratory
diseases. Recent studies have shown that PM2.5 particles can cause chronic heart failure, heart
arrhythmias, and strokes, as well as lung damage, cirrhosis, inflammation, cancer, cardiovascular
disease, and metabolic disorders. Furthermore, some studies have concluded that PM2.5 particles
in the environment are a risk factor for gastrointestinal, liver, colon, and lung cancer as well as it
affects the growth and metastasis of various cancer cells caused by other factors. In our country, the
health effects of air pollution and the relationship between the pathogenesis of cancer research are
scarce. Therefore, the study of the effects of PM2.5 particles on cancer cell proliferation, migration
(metastasis) can provide a significant role for cancer treatment, diagnosis, and prevention.
Purpose:
Determining the effects of PM2.5 particles on cancer cell proliferation, migration (metastasis)
in in-vitro
Material and Methods:
A human liver cancer cell line (HepG2), human gastric cancer cell line (AGS)
were obtained from the central scientific research laboratory in the Institute of medical sciences.
HepG2, AGS cells were seeded at a concentration of 1*105 cells/mL in a culture flask and cultured
in RPMI-1640 medium supplemented with 10% FBS, 1% antibiotic mix (penicillin, streptomycin) in a
humidified atmosphere of 5% CO2 at 37 °C. The cytotoxic effect of PM 2.5 in AGS, HepG2 cells were
evaluated by MTT, CCK8 assays. AGS, HepG2 cells were incubated in 96 well plates for 24h then
treated with different concentrations (0, 5, 10, 25, 50 and 100 μg ) of Bayankhoshuu, Buhiin urguu,
and Zaisan samples for 24h, respectively.
Results:
Concentrations of 10, 25, and 50 μg/ml of samples collected from the Bukhiin urguu and
Zaisan in March increased HepG2 cell growth, while doses of 25, 50 μg/ml of samples collected from
Bayankhoshuu in March and December increased HepG2 cell growth. Therefore, concentrations of
25 and 50 μg/ml of samples collected from Bayankhoshuu in March increased AGS cell growth, while concentrations of 25, 100 and μg/ml of samples collected in December increased AGS cell growth.
However, no cytotoxic effect was observed in the sample collected from Zaisan in March, whereas
the PM2.5 sample enhanced AGS cell growth in dose dependent manner in December.(p <0.05)
Conclusion
High levels of heavy metals were detected in samples collected in December from
Bayankhoshuu, Bukhiin urguu and Zaisan of Ulaanbaatar. Concentration of 25 μg/ml of samples
collected from the Bukhiin urguu and Zaisan in March increased HepG2 cell growth. Concentrations
of 25 μg/ml of PM2.5 collected from three regions around Ulaanbaatar increased HepG2 and AGS
cell migration.