1.Long-term clinical and experimental/surface analytical studies of carbon/carbon maxillofacial implants.
Gyorgy SZABO ; Jozsef BARABAS ; Sandor BOGDAN ; Zsolt NEMETH ; Bela SEBOK ; Gabor KISS
Maxillofacial Plastic and Reconstructive Surgery 2015;37(10):34-
BACKGROUND: Over the past 30-40 years, various carbon implant materials have become more interesting, because they are well accepted by the biological environment. The traditional carbon-based polymers give rise to many complications. The polymer complication may be eliminated through carbon fibres bound by pyrocarbon (carbon/carbon). The aim of this study is to present the long-term clinical results of carbon/carbon implants, and the results of the scanning electron microscope and energy dispersive spectrometer investigation of an implant retrieved from the human body after 8 years. METHODS: Mandibular reconstruction (8-10 years ago) was performed with pure (99.99 %) carbon implants in 16 patients (10 malignant tumours, 4 large cystic lesions and 2 augmentative processes). The long-term effect of the human body on the carbon/carbon implant was investigated by comparing the structure, the surface morphology and the composition of an implant retrieved after 8 years to a sterilized, but not implanted one. RESULTS: Of the 16 patients, the implants had to be removed earlier in 5 patients because of the defect that arose on the oral mucosa above the carbon plates. During the long-term follow-up, plate fracture, loosening of the screws, infection or inflammations around the carbon/carbon implants were not observed. The thickness of the carbon fibres constituting the implants did not change during the 8-year period, the surface of the implant retrieved was covered with a thin surface layer not present on the unimplanted implant. The composition of this layer is identical to the composition of the underlying carbon fibres. Residual soft tissue penetrating the bulk material between the carbon fibre bunches was found on the retrieved implant indicating the importance of the surface morphology in tissue growth and adhering implants. CONCLUSIONS: The surface morphology and the structure were not changed after 8 years. The two main components of the implant retrieved from the human body are still carbon and oxygen, but the amount of oxygen is 3-4 times higher than on the surface of the reference implant, which can be attributed to the oxidative effect of the human body, consequently in the integration and biocompatibility of the implant. The clinical conclusion is that if the soft part cover is appropriate, the carbon implants are cosmetically and functionally more suitable than titanium plates.
Carbon
;
Follow-Up Studies
;
Human Body
;
Humans
;
Inflammation
;
Mandible
;
Mandibular Reconstruction
;
Mouth Mucosa
;
Oxygen
;
Polymers
;
Titanium
2.Influence of Genista tinctoria L. or methylparaben on subchronic toxicity of bisphenol A in rats.
Daniela-Saveta POPA ; Pompei BOLFA ; Bela KISS ; Laurian VLASE ; Ramona PĂLTINEAN ; Anca POP ; Cornel CĂTOI ; Gianina CRIŞAN ; Felicia LOGHIN
Biomedical and Environmental Sciences 2014;27(2):85-96
OBJECTIVETo evaluate the influence of an extract of Genista tinctoria L. herba (GT) or methylparaben (MP) on histopathological changes and 2 biomarkers of oxidative stress in rats subchronicly exposed to bisphenol A (BPA).
METHODSAdult female Wistar rats were orally exposed for 90 d to BPA (50 mg/kg), BPA+GT (35 mg isoflavones/kg) or BPA+MP (250 mg/kg). Plasma and tissue samples were taken from liver, kidney, thyroid, uterus, ovary, and mammary gland after 30, 60, and 90 d of exposure respectively. Lipid peroxidation and in vivo hydroxyl radical production were evaluated by histological analysis along with malondialdehyde and 2,3-dihydroxybenzoic acid detection.
RESULTSThe severity of histopathological changes in liver and kidneys was lower after GT treatment than after BPA or BPA+MP treatment. A minimal thyroid receptor antagonist effect was only observed after BPA+MP treatment. The abnormal folliculogenesis increased in a time-dependent manner, and the number of corpus luteum decreased. No significant histological alterations were found in the uterus. The mammary gland displayed specific estrogen stimulation changes at all periods. Both MP and GT revealed antioxidant properties reducing lipid peroxidation and BPA-induced hydroxyl radical generation.
CONCLUSIONGT L. extract ameliorates the toxic effects of BPA and is proved to have antioxidant potential and antitoxic effect. MP has antioxidant properties, but has either no effect or exacerbates the BPA-induced histopathological changes.
Animals ; Benzhydryl Compounds ; toxicity ; Chemical and Drug Induced Liver Injury ; pathology ; prevention & control ; Endocrine Disruptors ; toxicity ; Female ; Genista ; Hydroxyl Radical ; blood ; Lipid Peroxidation ; drug effects ; Liver ; pathology ; Oxidative Stress ; drug effects ; Parabens ; toxicity ; Phenols ; toxicity ; Phytotherapy ; Plant Extracts ; pharmacology ; therapeutic use ; Rats ; Rats, Wistar