1.Determination of concentrations of indoor air pollutants emitted from briquette combustion
Oyun-Erdene O ; Chinzorig B ; Barkhasragchaa B ; Tumendelger D ; Solongo Ch ; Anu B ; Burmaajav B ; Suvd B
Mongolian Medical Sciences 2022;199(1):53-61
Introduction:
This field assessment was performed to ensure the effective implementation of Order No. A/142 of the Deputy Prime Minister of Mongolia dated 30th December 2021 and Order No. A/01 of the Head of the National Committee for Reducing Environmental Pollution dated 3rd January 2022 and to monitor the level of indoor air pollutants emitted from traditional stoves and standard stoves.
Purpose:
To determine the level of indoor air pollutants emitted from briquette combustion and to develop recommendations by comparing various types of stoves and dwellings.
Materials and Methods:
Through analytical cross-sectional designs, three households from Songinokhairkhan district and one household from Chingeltei district were selected to participate in this assessment as they use briquettes for heating, vary in their dwelling types (ger (traditional Mongolian tent), house) and their stove types (traditional, standard), stay home during the day and chose to participate in the assessment. 24-hour continuous measurements were conducted for each dwelling and before taking measurements, we calibrated and adjusted the air suction velocity of the measuring instrument at the Central Metrology Laboratory. The monitor was placed at a distance of 0.5m from the stove and a height of 0.5-1.0m from the floor. The results were then compared with the Mongolian National Standard “General air quality and technical requirements MNS4585:2016” and WHO Guidelines for Indoor Air Quality 2021. Statistical analysis was performed using SPSS 24.0 software, mean, ANOVA test, and if the p-value is less than 0.05, our results are statistically significant.
Results:
The concentration level of SO2 in houses with “Dul” stoves was within the level specified in the Mongolian standard MNS4585: 2016 and WHO Guidelines for Indoor Air Quality 2021, while 24-hour SO2 concentration in gers and houses with traditional stoves was 1.3-2.92 times higher than the standards. The 24-hour average concentration of nitrogen dioxide in houses with traditional stoves was 1.73 times higher than the Mongolian air quality standard MNS4585: 2016. There were statistically significant differences in the emission levels of SO2 and NO2 depending on dwelling and stove types (df=4, f=4.04, p=0.008 and df=4, f=17.17, p=0.001, respectively.). The 8-hour average (10,000 μg/m3) CO concentration was statistically significant for various types of dwellings and stoves (df=4, f=45.17, p=0.001), whereas there was a statistically significant difference in CO concentrations in gers with traditional stoves and gers with standard stoves in terms of morning, afternoon, and evening hours (df=3, f=33.17, p=0.001).
Conclusion
Indoor air pollutants in the households except for houses with “Dul” stoves have been determined to exceed the air quality standards set by the Mongolian air quality standards and WHO Guidelines for Indoor Air Quality 2021.
2.Integrin alpha 11 in the regulation of the myofibroblast phenotype: implications for fibrotic diseases.
Ruchi BANSAL ; Shigeki NAKAGAWA ; Saleh YAZDANI ; Joop VAN BAARLEN ; Anu VENKATESH ; Anna P KOH ; Won Min SONG ; Nicolas GOOSSENS ; Hideo WATANABE ; Mary B BEASLEY ; Charles A POWELL ; Gert STORM ; Naftali KAMINSKI ; Harry VAN GOOR ; Scott L FRIEDMAN ; Yujin HOSHIDA ; Jai PRAKASH
Experimental & Molecular Medicine 2017;49(11):e396-
Tissue fibrosis, characterized by excessive accumulation of aberrant extracellular matrix (ECM) produced by myofibroblasts, is a growing cause of mortality worldwide. Understanding the factors that induce myofibroblastic differentiation is paramount to prevent or reverse the fibrogenic process. Integrin-mediated interaction between the ECM and cytoskeleton promotes myofibroblast differentiation. In the present study, we explored the significance of integrin alpha 11 (ITGA11), the integrin alpha subunit that selectively binds to type I collagen during tissue fibrosis in the liver, lungs and kidneys. We showed that ITGA11 was co-localized with α-smooth muscle actin-positive myofibroblasts and was correlatively induced with increasing fibrogenesis in mouse models and human fibrotic organs. Furthermore, transcriptome and protein expression analysis revealed that ITGA11 knockdown in hepatic stellate cells (liver-specific myofibroblasts) markedly reduced transforming growth factor β-induced differentiation and fibrotic parameters. Moreover, ITGA11 knockdown dramatically altered the myofibroblast phenotype, as indicated by the loss of protrusions, attenuated adhesion and migration, and impaired contractility of collagen I matrices. Furthermore, we demonstrated that ITGA11 was regulated by the hedgehog signaling pathway, and inhibition of the hedgehog pathway reduced ITGA11 expression and fibrotic parameters in human hepatic stellate cells in vitro, in liver fibrosis mouse model in vivo and in human liver slices ex vivo. Therefore, we speculated that ITGA11 might be involved in fibrogenic signaling and might act downstream of the hedgehog signaling pathway. These findings highlight the significance of the ITGA11 receptor as a highly promising therapeutic target in organ fibrosis.
Animals
;
Collagen
;
Collagen Type I
;
Cytoskeleton
;
Extracellular Matrix
;
Fibrosis
;
Hedgehogs
;
Hepatic Stellate Cells
;
Humans
;
In Vitro Techniques
;
Kidney
;
Liver
;
Liver Cirrhosis
;
Lung
;
Mice
;
Mortality
;
Myofibroblasts*
;
Phenotype*
;
Transcriptome
;
Transforming Growth Factors