1.Microbial cause in the ulcerative keratitis
Journal of Medical and Pharmaceutical Information 2000;(2):9-12
Study aimed to introduce the etiology and pathogen of microbial ulcerative keratitis as well as biological features, impact of microorganism. The study also introduced the diagnosis of causative agents and treatment of diseases due to common microorganism such as Staphylococcus, Streptococcus, S. pneumonia, Moraxella, Pseudomonas aeruginosa
Corneal Ulcer
;
Antibiosis
2.In Vitro Antagonism of Phytophthora capsici And Fusarium solani by Bacterial Isolates from Sarawak
Mohd Farith Kota ; Awang Ahmad Sallehin Awang Husaini ; Samuel Lihan ; Mohd Hasnain
Malaysian Journal of Microbiology 2015;11(2):135-143
Aims: Phytophthora capsici and Fusarium solani are common fungal pathogens causing severe diseases that lead to
economic loss in pepper industry, especially in Sarawak. In response to the infections, chemical approach is more
common; nevertheless, biological control is more favorable to control fungal pathogens. Biological control approach
greatly reduces the problems associated with chemical applications and it restores balance of the natural environment.
Here we present the ongoing work to study the action of antagonistic bacteria, Bacillus sp. and Pseudomonas sp., that
produce volatile and non-volatile antifungal compounds against P. capsici and F. solani on pepper plants.
Methodology and results: A total of seven bacterial candidates were isolated from different locations and tested for
their antagonistic properties against P. capsici and F. solani in a dual culture assay and extracellular metabolite test.
Extracellular hydrolytic enzymes production was also monitored and followed by genotypic indentification. Preliminary
antagonism tests indicated that bacterial isolate Pep3 and Pep4 inhibit up to 50% of the growth of P. capsici and F.
solani as compared to the control. Subsequent investigation on extracellular hydrolytic enzyme production revealed that
both bacterial isolates are capable of secreting hydrolytic enzymes. Microscopic and genotypic analyses identified the
bacterial isolates Pep3 as Bacillus amyloliquefaciens (KJ461444) and Pep4 as Pseudomonas pachastrellae
(KM460937).
Conclusion, significance and impact of study: B. Amyloliquefaciens (KJ461444) and P. pachastrellae (KM460937)
inhibited the growth of P. capsici and F. solani thus reflecting the potential of the produced metabolites to be purified and
used in combating plant pathogenic fungi.
Biological Control Agents
;
Fungi
;
Antibiosis
3.Antagonistic activity of volatile metabolites from Trichoderma asperellum.
Lingyun TAO ; Yiwen ZHANG ; Yaqian LI ; Laipeng LUO ; Zenglu ZHANG ; Jie CHEN
Chinese Journal of Biotechnology 2020;36(6):1181-1189
Trichoderma spp. is a kind of filamentous fungi with important biocontrol value. Twelve strains of Trichoderma spp. were isolated from the soils of different types of crops in Shaoxing, Zhejiang and Foshan, Guangdong. The antagonistic resistance to Fusarium oxysporum was compared by plate confrontation test. The further analysis of volatile secondary metabolites for two strains were carried out using HS-SPME-GC-MS analysis. The results showed that T. asperellum ZJSX5003 and GDFS1009 had fast growth ability, and the inhibition effects on F. oxysporum were 73% and 74% respectively. Six identical volatile metabolites were detected as follows 2-Methyl-1-propanol, 3-Methyl-1-butanol, 3-Methyl-3-buten-1-ol, Acetyl methyl carbinol, Butane-2,3-diol and 6-n-pentyl-2H-pyran-2-one (6-PAP). Among them, 6-PAP was validated to have a higher inhibitory effect on F. oxysporum in vitro. This study will provide basis for the development of biocontrol agents with metabolites of Trichoderma, such as 6-PAP.
Antibiosis
;
Antifungal Agents
;
pharmacology
;
Fusarium
;
drug effects
;
physiology
;
Gas Chromatography-Mass Spectrometry
;
Trichoderma
;
chemistry
;
metabolism
4.Influence of glucose concentration on the inhibition of Streptococcus oligofermentans on Streptococcus mutans.
Ying LIU ; Fei WU ; Lei CHU ; Ke-ke XIA ; Ying-hui WANG ; Li-geng WU
Chinese Journal of Stomatology 2012;47(1):43-47
OBJECTIVETo investigate the inhibition of Streptococcus oligofermentans (So) on Streptococcus mutans (Sm) and the producibility of hydrogen peroxide by So under the influence of glucose concentration environment.
METHODSThe inhibition between So and Sm was observed by plating method under the different glucose concentration environment. The initial synthesis rates and production of hydrogen peroxide by So were determined under the different glucose concentration environment by 4-aminoantipyine-horseradish peroxidase method at A(510).
RESULTSUnder 0, 10 and 50 mmol/L glucose environment, the inhibition of So on Sm was evident. When both Sm and So were inoculated at the same time, the ratio of inhibition area by bacterial membrane area was 0.202 ± 0.005, 0.467 ± 0.025, 0.468 ± 0.028 under 0, 10, 50 mmol/L glucose environment. When So was cultivated first and then Sm applied, the ratio was 0.394 ± 0.004, 0.811 ± 0.075 and 0.816 ± 0.007 under 0, 10 and 50 mmol/L glucose environment respectively. The inhibition under 10 and 50 mmol/L glucose environment were more significant than that under non-glucose environment. There was no significant difference between these two glucose concentrations (P > 0.05). The initial synthesis rates of H2O2 by So under the 10 mmol/L [(23.573 ± 0.263) µmo×L(-1)×min(-1)] and 50 mmol/L [(23.337 ± 0.473) µmol×L(-1)×min(-1)] glucose were higher than without glucose[(10.513 ± 0.516) µmol×L(-1)×min(-1)], P < 0.05. H2O2 was not detected in 1000 mmol/L glucose. However, the production of H2O2 by So under 0 mmol/L glucose was higher than other glucose concentrations (P < 0.05).
CONCLUSIONSThe capability of the inhibition of So on Sm was affected by glucose environment and was much stronger under certain glucose concentrations (10, 50 mmol/L).
Antibiosis ; Dose-Response Relationship, Drug ; Glucose ; metabolism ; Hydrogen Peroxide ; metabolism ; Streptococcus ; growth & development ; metabolism ; physiology ; Streptococcus mutans ; growth & development ; metabolism
5.Probiotics to counteract biofilm-associated infections: promising and conflicting data.
Claudia VUOTTO ; Francesca LONGO ; Gianfranco DONELLI
International Journal of Oral Science 2014;6(4):189-194
Altered bowel flora is currently thought to play a role in a variety of disease conditions, and the use of Bifidobacterium spp. and Lactobacillus spp. as probiotics has been demonstrated to be health-promoting, even if the success of their administration depends on the applied bacterial strain(s) and the targeted disease. In the last few decades, specific probiotics have been shown to be effective in the treatment or the prevention of acute viral gastroenteritis, pediatric post-antibiotic-associated diarrhea, some pediatric allergic disorders, necrotizing enterocolitis in preterm infants, inflammatory bowel diseases and postsurgical pouchitis. The potential application of probiotics is continuously widening, with new evidence accumulating to support their effect on the prevention and treatment of other disease conditions, including several oral diseases, such as dental caries, periodontal diseases and oral malodor, as well as genitourinary and wound infections. Considering the increasingly widespread ability of pathogens to generate persistent biofilm-related infections, an even more attractive proposal is to administer probiotics to prevent or counteract biofilm development. The response of biofilm-based oral, intestinal, vaginal and wound infections to probiotics treatment will be reviewed here in light of the most recent results obtained in this field.
Antibiosis
;
physiology
;
Bacterial Infections
;
prevention & control
;
Bifidobacterium
;
physiology
;
Biofilms
;
growth & development
;
Humans
;
Lactobacillus
;
physiology
;
Mucous Membrane
;
microbiology
;
Probiotics
;
therapeutic use
6.Isolation,screening and identification of endophytic fungi and detection of its antifungal effects against Alternaria panax.
Chun-Yuan ZHOU ; Xiang-Min PIAO ; Mei-Xia YAN ; Ying-Ping WANG
China Journal of Chinese Materia Medica 2019;44(2):274-277
To obtain biocontrol fungus for Alternaria panax,the antifungal effects of one strain of endophytic fungi isolated from leaves of healthy ginseng were screened and evaluated by using dual-culture method,and the taxonomic assignment of the screened strain was identified based on the morphological characters and ITS sequence analysis. The results of dual-culture showed that one of the endophytes marked as FS-01 had good antifungal effects and the inhibitory rates of FS-01 strain to A. panax was( 60. 21±0. 12) %.The hyphae junction of the both strains,A. panax dissolved,broke and winded,while the hyphae of FS-01 strain remained normal. The inhibitory rates of non-sterilized FS-01 strain fermentation liqud was( 13. 94±0. 21) %. Strain FS-01 identified as Chaetomium globosum.
Alternaria
;
pathogenicity
;
Antibiosis
;
Chaetomium
;
classification
;
isolation & purification
;
Endophytes
;
isolation & purification
;
Fungicides, Industrial
;
Panax
;
microbiology
;
Plant Diseases
;
prevention & control
7.Isolation and identification of endophytic fungi from Chelidonium majus and their antifungal activity.
Ting HUANG ; Wei XIE ; Xiao-Dong LIU ; Kai-Xun TANG ; Rui YANG
China Journal of Chinese Materia Medica 2019;44(3):460-464
In order to find new source of antifungal agents, eleven cultivable endophytic fungi were isolated from the roots,stems and leaves of Chelidonium majus by traditional method. Seven of them were identified as Colletotrichum(L1, L2, L3, S1, S3, S4, S5), and three of them were identified as Fusarium(R1,R2,R3) by morphological features and molecular biological technology. The antifungal activity test showed that all the tested fungi displayed some inhibitory activity against five common plant pathogens(C. gloeosporioides, Curvularia lunata, Pyricularia oryza, Alternaria alternate and A. brassicae), and their inhibition rate of some test items were over 60%. Among them, R1, S2, S3 and S4 were more potent than others. This study enriches the understanding of endophytes from Ch. majus and provides a basis for the study of new microbial fungicides.
Alternaria
;
pathogenicity
;
Antibiosis
;
Ascomycota
;
pathogenicity
;
Chelidonium
;
microbiology
;
Colletotrichum
;
chemistry
;
isolation & purification
;
Endophytes
;
chemistry
;
isolation & purification
;
Fusarium
;
chemistry
;
isolation & purification
8.Potential of Epicoccum purpurascens Strain 5615 AUMC as a Biocontrol Agent of Pythium irregulare Root Rot in Three Leguminous Plants.
Mycobiology 2010;38(4):286-294
Epicoccum purpurascens stain 5615 AUMC was investigated for its biocontrol activity against root rot disease caused by Pythium irregulare. E. purpurascens greenhouse pathogenicity tests using three leguminous plants indicated that the fungus was nonpathogenic under the test conditions. The germination rate of the three species of legume seeds treated with a E. purpurascens homogenate increased significantly compared with the seeds infested with P. irregulare. No root rot symptoms were observed on seeds treated with E. purpurascens, and seedlings appeared more vigorous when compared with the non-treated control. A significant increase in seedling growth parameters (seedling length and fresh and dry weights) was observed in seedlings treated with E. purpurascens compared to pathogen-treated seedlings. Pre-treating the seeds with the bioagent fungus was more efficient for protecting seeds against the root rot disease caused by P. irregulare than waiting for disease dispersal before intervention. To determine whether E. purpurascens produced known anti-fungal compounds, an acetone extract of the fungus was analyzed by gas chromatography mass spectrometry. The extract revealed a high percentage of the cinnamic acid derivative (trimethylsiloxy) cinnamic acid methyl ester. The E. purpurascens isolate grew more rapidly than the P. irregulare pathogen in a dual culture on potato dextrose agar nutrient medium, although the two fungi grew similarly when cultured separately. This result may indicate antagonism via antibiosis or competition.
Acetone
;
Agar
;
Antibiosis
;
Cinnamates
;
Fabaceae
;
Fungi
;
Gas Chromatography-Mass Spectrometry
;
Germination
;
Glucose
;
Pythium
;
Seedlings
;
Seeds
;
Solanum tuberosum
;
Sprains and Strains
9.Screening, identification and antagonistic effect evaluation of biocontrol strains to Asarum leaf blight.
Ya-Ling LIU ; Ying YU ; Li-Li CUI ; Hui-Xia LEI ; Hai-Kun LU ; Jing GUO
China Journal of Chinese Materia Medica 2020;45(5):1047-1052
Leaf blight is the main disease of Asarum. At present, chemical treatment is main measure for disease control, and there is no report on biological control. In order to achieve the biological control of Asarum leaf blight, the biocontrol strains with antagonistic effect on Asarum leaf blight were screened. The rhizosphere bacteria of healthy Asarum plants were isolated by soil dilution method, and the isolated strains were screened by the methods of antagonistic antifungal and fermentation liquid antifungal, then the strains were identified and the control effect in vivo was determined. Abiocontrol bacterial strains S2-31 which with high antagonism to leaf blight was obtained from more than 100 isolated strains. The inhibitory rates of antagonistic antifungal and fermentation liquid antifungal reached 92.47% and 60.56%, respectively. It was identified by morphology and 16 S rDNA sequence analysis, and the strain was identified as Brevibacillus laterosporus. The results of indoor potted experiment showed that the control effect was 79.87%, 71.44% and 66.82% on the 3 rd, 5 th and 7 th day after inoculation, respectively, which indicated that S2-31 could reduce the disease index and control the development of Asarum leaf blight.
Antibiosis
;
Asarum/microbiology*
;
Biological Control Agents
;
DNA, Ribosomal
;
Firmicutes
;
Fungi/pathogenicity*
;
Plant Diseases/prevention & control*
;
Rhizosphere
;
Soil Microbiology
10.Research progress in root rot diseases of Chinese herbal medicine and control strategy by antagonistic microorganisms.
Fen GAO ; Xiao-xia REN ; Meng-liang WANG ; Xue-mei QIN
China Journal of Chinese Materia Medica 2015;40(21):4122-4126
In recent years, root rot diseases of Chinese herbal medicine have been posing grave threat to the development of the traditional Chinese medicine industry. This article presents a review on the occurring situation of the root rot disease, including the occurrence of the disease, the diversity of the pathogens, the regional difference in dominant pathogens,and the complexity of symptoms and a survey of the progress in bio-control of the disease using antagonistic microorganisms. The paper also discusses the existing problems and future prospects in the research.
Animals
;
Antibiosis
;
Bacteria
;
growth & development
;
Fungi
;
physiology
;
Nematoda
;
growth & development
;
Pest Control, Biological
;
methods
;
Plant Diseases
;
microbiology
;
parasitology
;
prevention & control
;
Plant Roots
;
microbiology
;
parasitology
;
Plants, Medicinal
;
microbiology
;
parasitology