1.Recent Developments in Delivery, Bioavailability, Absorption and Metabolism of Curcumin: the Golden Pigment from Golden Spice.
Sahdeo PRASAD ; Amit K TYAGI ; Bharat B AGGARWAL
Cancer Research and Treatment 2014;46(1):2-18
Curcumin (diferuloylmethane) is a yellow pigment present in the spice turmeric (Curcuma longa) that has been associated with antioxidant, anti-inflammatory, anticancer, antiviral, and antibacterial activities as indicated by over 6,000 citations. In addition, over one hundred clinical studies have been carried out with curcumin. One of the major problems with curcumin is perceived to be the bioavailability. How curcumin should be delivered in vivo, how bioavailable is it, how well curcumin is absorbed and how it is metabolized, is the focus of this review. Various formulations of curcumin that are currently available are also discussed.
Absorption*
;
Biological Availability*
;
Curcuma
;
Curcumin*
;
Metabolism*
;
Spices*
2.Antioxidant Machinery Related to Decreased MDA Generation by Thymus Algeriensis Essential Oil-induced Liver and Kidney Regeneration.
Fatma GUESMI ; Amit K TYAGI ; Houda BELLAMINE ; Ahmed LANDOULSI
Biomedical and Environmental Sciences 2016;29(9):639-649
OBJECTIVEThis study was conducted to determine the histopathological and biochemical effects of Thymus algeriensis essential oil (TEO) on hydrogen peroxide (H2O2)-induced oxidative stress in liver and kidney tissues of rats.
METHODSRats were treated in six groups and were exposed for 2 weeks to low (LD; 100 μmol/L) and high doses (HD; 1 mmol/L) of H2O2 in the presence or absence of TEO (180 mg/kg). Liver and kidney atrophy was measured by using biochemical and histopathological assays.
RESULTSOur study demonstrated that H2O2 induced liver and kidney atrophy, as evidenced by the significant elevation of serum aminotransferase, urea, and creatinine levels compared with those in the control rats. Urea levels were estimated by evaluating the activity of serum urease that hydrolyzes urea into CO2 and ammonia. However, TEO treatment significantly alleviated oxidative stress in the H2O2-induced liver and kidney toxicity model by reducing the levels of malondialdehyde concomitantly with marked elevations in superoxide dismutase, catalase, glutathione peroxidase, and glutathione S-transferase, as well as decrease in glutathione activity.
CONCLUSIONOur data demonstrated that TEO protected against H2O2 toxicity by decreasing oxidant levels and DNA damage, as well as increasing antioxidant levels, indicating that TEO has a spectrum of antioxidant and DNA-protective properties.
Animals ; Antioxidants ; pharmacology ; Hydrogen Peroxide ; metabolism ; toxicity ; Kidney ; drug effects ; physiology ; Lipid Metabolism ; drug effects ; Liver ; drug effects ; physiology ; Male ; Malondialdehyde ; metabolism ; Oils, Volatile ; pharmacology ; Oxidative Stress ; drug effects ; Plant Extracts ; pharmacology ; Rats ; Rats, Sprague-Dawley ; Regeneration ; drug effects ; Thymus Plant ; chemistry
3.Prevention of H2O2 Induced Oxidative Damages of Rat Testis by Thymus algeriensis.
Fatma GUESMI ; Hamida BEGHALEM ; Amit K TYAGI ; Manel Ben ALI ; Ramla Ben MOUHOUB ; Houda BELLAMINE ; Ahmed LANDOULSI
Biomedical and Environmental Sciences 2016;29(4):275-285
OBJECTIVEWe evaluate the effects of Thymus algeriensis (TEO) against hydrogen peroxide (H2O2) toxicity on body and testis weight, testis sperm count, testis lipid peroxidation, and antioxidant enzyme activities in rats.
METHODSRats were treated with low (LD) and high dose (HD) of H2O2 (0.1 and 1 mmol/L) in the presence or absence of TEO (150 mg/kg).
RESULTSThe results exhibited a significant decrease in body weight and testis weight, in total sperm number decrease (P<0.05), sperm motility and percentage of sperm viability, leading to complete arrest, in sperm flagellar beat frequency by the gavage of 1 mmol/L H2O2 compared to controls. The administration of H2O2 resulted in a significant reduction in testis GSH, GPx, CAT, SOD, and GST activity and significant increase (P<0.05) in MDA concentration compared with the untreated control animals. TEO pre-treatment protected testis from the H2O2 generated oxidative stress. These results were confirmed by histological architecture examinations.
CONCLUSIONH2O2 has the ability to alter the sperm function, characteristics and development of testis. However, TEO is an efficient natural agent, which can prevent the testis from H2O2-induced oxidative damage in rats.
Animals ; Hydrogen Peroxide ; toxicity ; Male ; Oxidative Stress ; Plant Extracts ; pharmacology ; Rats ; Rats, Wistar ; Testis ; drug effects ; Thymus Plant ; chemistry