1.Noninvasive Diagnostic Technique for Nonalcoholic Fatty Liver Disease Based on Features of Tongue Images.
Rong-Rui WANG ; Jia-Liang CHEN ; Shao-Jie DUAN ; Ying-Xi LU ; Ping CHEN ; Yuan-Chen ZHOU ; Shu-Kun YAO
Chinese journal of integrative medicine 2024;30(3):203-212
OBJECTIVE:
To investigate a new noninvasive diagnostic model for nonalcoholic fatty liver disease (NAFLD) based on features of tongue images.
METHODS:
Healthy controls and volunteers confirmed to have NAFLD by liver ultrasound were recruited from China-Japan Friendship Hospital between September 2018 and May 2019, then the anthropometric indexes and sampled tongue images were measured. The tongue images were labeled by features, based on a brief protocol, without knowing any other clinical data, after a series of corrections and data cleaning. The algorithm was trained on images using labels and several anthropometric indexes for inputs, utilizing machine learning technology. Finally, a logistic regression algorithm and a decision tree model were constructed as 2 diagnostic models for NAFLD.
RESULTS:
A total of 720 subjects were enrolled in this study, including 432 patients with NAFLD and 288 healthy volunteers. Of them, 482 were randomly allocated into the training set and 238 into the validation set. The diagnostic model based on logistic regression exhibited excellent performance: in validation set, it achieved an accuracy of 86.98%, sensitivity of 91.43%, and specificity of 80.61%; with an area under the curve (AUC) of 0.93 [95% confidence interval (CI) 0.68-0.98]. The decision tree model achieved an accuracy of 81.09%, sensitivity of 91.43%, and specificity of 66.33%; with an AUC of 0.89 (95% CI 0.66-0.92) in validation set.
CONCLUSIONS
The features of tongue images were associated with NAFLD. Both the 2 diagnostic models, which would be convenient, noninvasive, lightweight, rapid, and inexpensive technical references for early screening, can accurately distinguish NAFLD and are worth further study.
Humans
;
Non-alcoholic Fatty Liver Disease/diagnostic imaging*
;
Ultrasonography
;
Anthropometry
;
Algorithms
;
China
3.Automatic determination of mandibular landmarks based on three-dimensional mandibular average model.
Zi Xiang GAO ; Yong WANG ; Ao Nan WEN ; Yu Jia ZHU ; Qing Zhao QIN ; Yun ZHANG ; Jing WANG ; Yi Jiao ZHAO
Journal of Peking University(Health Sciences) 2023;55(1):174-180
OBJECTIVE:
To explore an efficient and automatic method for determining the anatomical landmarks of three-dimensional(3D) mandibular data, and to preliminarily evaluate the performance of the method.
METHODS:
The CT data of 40 patients with normal craniofacial morphology were collected (among them, 30 cases were used to establish the 3D mandibular average model, and 10 cases were used as test datasets to validate the performance of this method in determining the mandibular landmarks), and the 3D mandibular data were reconstructed in Mimics software. Among the 40 cases of mandibular data after the 3D reconstruction, 30 cases that were more similar to the mean value of Chinese mandibular features were selected, and the size of the mandibular data of 30 cases was normalized based on the Procrustes analysis algorithm in MATLAB software. Then, in the Geomagic Wrap software, the 3D mandibular average shape model of the above 30 mandibular data was constructed. Through symmetry processing, curvature sampling, index marking and other processing procedures, a 3D mandible structured template with 18 996 semi-landmarks and 19 indexed mandibular anatomical landmarks were constructed. The open source non-rigid registration algorithm program Meshmonk was used to match the 3D mandible template constructed above with the tested patient's 3D mandible data through non-rigid deformation, and 19 anatomical landmark positions of the patient's 3D mandible data were obtained. The accuracy of the research method was evaluated by comparing the distance error of the landmarks manually marked by stomatological experts with the landmarks marked by the method of this research.
RESULTS:
The method of this study was applied to the data of 10 patients with normal mandibular morphology. The average distance error of 19 landmarks was 1.42 mm, of which the minimum errors were the apex of the coracoid process [right: (1.01±0.44) mm; left: (0.56±0.14) mm] and maximum errors were the anterior edge of the lowest point of anterior ramus [right: (2.52±0.95) mm; left: (2.57±1.10) mm], the average distance error of the midline landmarks was (1.15±0.60) mm, and the average distance error of the bilateral landmarks was (1.51±0.67) mm.
CONCLUSION
The automatic determination method of 3D mandibular anatomical landmarks based on 3D mandibular average shape model and non-rigid registration algorithm established in this study can effectively improve the efficiency of automatic labeling of 3D mandibular data features. The automatic determination of anatomical landmarks can basically meet the needs of oral clinical applications, and the labeling effect of deformed mandible data needs to be further tested.
Humans
;
Imaging, Three-Dimensional/methods*
;
Mandible/diagnostic imaging*
;
Software
;
Algorithms
;
Anatomic Landmarks/anatomy & histology*
4.Application of Novel Down-sampling Method in Retinal Vessel Segmentation.
Zhijin LYU ; Xuefang CHEN ; Xiaofang ZHAO ; Huazhu LIU
Chinese Journal of Medical Instrumentation 2023;47(1):38-42
Accurate segmentation of retinal blood vessels is of great significance for diagnosing, preventing and detecting eye diseases. In recent years, the U-Net network and its various variants have reached advanced level in the field of medical image segmentation. Most of these networks choose to use simple max pooling to down-sample the intermediate feature layer of the image, which is easy to lose part of the information, so this study proposes a simple and effective new down-sampling method Pixel Fusion-pooling (PF-pooling), which can well fuse the adjacent pixel information of the image. The down-sampling method proposed in this study is a lightweight general module that can be effectively integrated into various network architectures based on convolutional operations. The experimental results on the DRIVE and STARE datasets show that the F1-score index of the U-Net model using PF-pooling on the STARE dataset improved by 1.98%. The accuracy rate is increased by 0.2%, and the sensitivity is increased by 3.88%. And the generalization of the proposed module is verified by replacing different algorithm models. The results show that PF-pooling has achieved performance improvement in both Dense-UNet and Res-UNet models, and has good universality.
Algorithms
;
Retinal Vessels
;
Image Processing, Computer-Assisted
5.Using machine learning algorithm to predict the risk of post-traumatic stress disorder among firefighters in Changsha.
Aoqian DENG ; Yanyi YANG ; Yunjing LI ; Mei HUANG ; Liang LI ; Yimei LU ; Wentao CHEN ; Rui YUAN ; Yumeng JU ; Bangshan LIU ; Yan ZHANG
Journal of Central South University(Medical Sciences) 2023;48(1):84-91
OBJECTIVES:
Firefighters are prone to suffer from psychological trauma and post-traumatic stress disorder (PTSD) in the workplace, and have a poor prognosis after PTSD. Reliable models for predicting PTSD allow for effective identification and intervention for patients with early PTSD. By collecting the psychological traits, psychological states and work situations of firefighters, this study aims to develop a machine learning algorithm with the aim of effectively and accurately identifying the onset of PTSD in firefighters, as well as detecting some important predictors of PTSD onset.
METHODS:
This study conducted a cross-sectional survey through convenient sampling of firefighters from 20 fire brigades in Changsha, which were evenly distributed across 6 districts and Changsha County, with a total of 628 firefighters. We used the synthetic minority oversampling technique (SMOTE) to process data sets and used grid search to finish the parameter tuning. The predictive capability of several commonly used machine learning models was compared by 5-fold cross-validation and using the area under the receiver operating characteristic curve (ROC-AUC), accuracy, precision, recall, and F1 score.
RESULTS:
The random forest model achieved good performance in predicting PTSD with an average AUC score at 0.790. The mean accuracy of the model was 90.1%, with an F1 score of 0.945. The three most important predictors were perseverance, forced thinking, and reflective deep thinking, with weights of 0.165, 0.158, and 0.152, respectively. The next most important predictors were employment time, psychological power, and optimism.
CONCLUSIONS
PTSD onset prediction model for Changsha firefighters constructed by random forest has strong predictive ability, and both psychological characteristics and work situation can be used as predictors of PTSD onset risk for firefighters. In the next step of the study, validation using other large datasets is needed to ensure that the predictive models can be used in clinical setting.
Humans
;
Stress Disorders, Post-Traumatic/diagnosis*
;
Firefighters/psychology*
;
Cross-Sectional Studies
;
Algorithms
;
Machine Learning
6.Application of extended reality technology for real-time navigation in clinical operation.
Journal of Southern Medical University 2023;43(1):128-132
OBJECTIVE:
To explore the application of extended reality (XR) technology in clinical surgeries for improving the success rate of surgeries.
METHODS:
To assist the surgeons to better understand the location, size and geometric shape of the lesions and reduce potential radiation exposure in minimally invasive surgical navigation based on two-dimensional images, we constructed three-dimensional models based on CT data and used XR technology to achieve intraoperative navigation. An improved quaternion method was used to improve the accuracy of electromagnetic positioning, with which the system error of positioning accuracy was reduced to below 2 mm. A 5G network was used to optimize the server GPU programming algorithm, and real-time video stream coding strategy and network design were adopted to reduce data transmission jam and delay in the remote surgery network, which achieved an average delay of less than 60 ms. A Gaussian distribution deformation model was used to simulate collision detection and stress deformation of the tissues to achieve a tactile perception effect.
RESULTS AND CONCLUSION
The intraoperative navigation system based on XR technology allowed more accurate determination of the location of the lesions, effectively reduced the surgical risk, and avoided the risk of intraoperative radiation exposure. The low latency and high fidelity of 5G network achieved real-time interaction during the surgery to provide a technical basis for multi-terminal remote cooperative surgery. The combination of force feedback technology and XR technology enables the surgeons to conduct deep immersion preoperative planning and virtual surgery to improve the success rate of surgery and shorten the learning curve.
Algorithms
;
Technology
7.Construction and evaluation of an artificial intelligence-based risk prediction model for death in patients with nasopharyngeal cancer.
Hao Xuan ZHANG ; Jin LU ; Cheng Yi JIANG ; Mei Fang FANG
Journal of Southern Medical University 2023;43(2):271-279
OBJECTIVE:
To screen the risk factors for death in patients with nasopharyngeal carcinoma (NPC) using artificial intelligence (AI) technology and establish a risk prediction model.
METHODS:
The clinical data of NPC patients obtained from SEER database (1973-2015). The patients were randomly divided into model building and verification group at a 7∶3 ratio. Based on the data in the model building group, R software was used to identify the risk factors for death in NPC patients using 4 AI algorithms, namely eXtreme Gradient Boosting (XGBoost), Decision Tree (DT), Least absolute shrinkage and selection operator (LASSO) and random forest (RF), and a risk prediction model was constructed based on the risk factor identified. The C-Index, decision curve analysis (DCA), receiver operating characteristic (ROC) curve and calibration curve (CC) were used for internal validation of the model; the data in the validation group and clinical data of 96 NPC patients (collected from First Affiliated Hospital of Bengbu Medical College) were used for internal and external validation of the model.
RESULTS:
The clinical data of a total of 2116 NPC patients were included (1484 in model building group and 632 in verification group). Risk factor screening showed that age, race, gender, stage M, stage T, and stage N were all risk factors of death in NPC patients. The risk prediction model for NPC-related death constructed based on these factors had a C-index of 0.76 for internal evaluation, an AUC of 0.74 and a net benefit rate of DCA of 9%-93%. The C-index of the model in internal verification was 0.740 with an AUC of 0.749 and a net benefit rate of DCA of 3%-89%, suggesting a high consistency of the two calibration curves. In external verification, the C-index of this model was 0.943 with a net benefit rate of DCA of 3%-97% and an AUC of 0.851, and the predicted value was consistent with the actual value.
CONCLUSIONS
Gender, age, race and TNM stage are risk factors of death of NPC patients, and the risk prediction model based on these factors can accurately predict the risks of death in NPC patients.
Humans
;
Nasopharyngeal Neoplasms
;
Nasopharyngeal Carcinoma
;
Artificial Intelligence
;
Algorithms
;
Software
8.Machine learning in medicine: what clinicians should know.
Jordan Zheng TING SIM ; Qi Wei FONG ; Weimin HUANG ; Cher Heng TAN
Singapore medical journal 2023;64(2):91-97
With the advent of artificial intelligence (AI), machines are increasingly being used to complete complicated tasks, yielding remarkable results. Machine learning (ML) is the most relevant subset of AI in medicine, which will soon become an integral part of our everyday practice. Therefore, physicians should acquaint themselves with ML and AI, and their role as an enabler rather than a competitor. Herein, we introduce basic concepts and terms used in AI and ML, and aim to demystify commonly used AI/ML algorithms such as learning methods including neural networks/deep learning, decision tree and application domain in computer vision and natural language processing through specific examples. We discuss how machines are already being used to augment the physician's decision-making process, and postulate the potential impact of ML on medical practice and medical research based on its current capabilities and known limitations. Moreover, we discuss the feasibility of full machine autonomy in medicine.
Humans
;
Artificial Intelligence
;
Machine Learning
;
Algorithms
;
Neural Networks, Computer
;
Medicine
9.Approach to bradyarrhythmias: A proposed algorithm.
Tiong Cheng YEO ; Fang Qin GOH ; Yao Neng TEO ; Ching Hui SIA
Annals of the Academy of Medicine, Singapore 2023;52(2):96-99
Bradyarrhythmias are commonly encountered in clinical practice. While there are several electrocardiographic criteria and algorithms for tachyarrhythmias, there is no algorithm for bradyarrhythmias to the best of our knowledge. In this article, we propose a diagnostic algorithm that uses simple concepts: (1) the presence or absence of P waves, (2) the relationship between the number of P waves and QRS complexes, and (3) the regularity of time intervals (PP, PR and RR intervals). We believe this straightforward, stepwise method provides a structured and thorough approach to the wide differential diagnosis of bradyarrhythmias, and in doing so, reduces misdiagnosis and mismanagement.
Humans
;
Bradycardia/therapy*
;
Algorithms
;
Diagnosis, Differential
;
Electrocardiography
10.Establishment and validation of a multigene model to predict the risk of relapse in hormone receptor-positive early-stage Chinese breast cancer patients.
Jiaxiang LIU ; Shuangtao ZHAO ; Chenxuan YANG ; Li MA ; Qixi WU ; Xiangzhi MENG ; Bo ZHENG ; Changyuan GUO ; Kexin FENG ; Qingyao SHANG ; Jiaqi LIU ; Jie WANG ; Jingbo ZHANG ; Guangyu SHAN ; Bing XU ; Yueping LIU ; Jianming YING ; Xin WANG ; Xiang WANG
Chinese Medical Journal 2023;136(2):184-193
BACKGROUND:
Breast cancer patients who are positive for hormone receptor typically exhibit a favorable prognosis. It is controversial whether chemotherapy is necessary for them after surgery. Our study aimed to establish a multigene model to predict the relapse of hormone receptor-positive early-stage Chinese breast cancer after surgery and direct individualized application of chemotherapy in breast cancer patients after surgery.
METHODS:
In this study, differentially expressed genes (DEGs) were identified between relapse and nonrelapse breast cancer groups based on RNA sequencing. Gene set enrichment analysis (GSEA) was performed to identify potential relapse-relevant pathways. CIBERSORT and Microenvironment Cell Populations-counter algorithms were used to analyze immune infiltration. The least absolute shrinkage and selection operator (LASSO) regression, log-rank tests, and multiple Cox regression were performed to identify prognostic signatures. A predictive model was developed and validated based on Kaplan-Meier analysis, receiver operating characteristic curve (ROC).
RESULTS:
A total of 234 out of 487 patients were enrolled in this study, and 1588 DEGs were identified between the relapse and nonrelapse groups. GSEA results showed that immune-related pathways were enriched in the nonrelapse group, whereas cell cycle- and metabolism-relevant pathways were enriched in the relapse group. A predictive model was developed using three genes ( CKMT1B , SMR3B , and OR11M1P ) generated from the LASSO regression. The model stratified breast cancer patients into high- and low-risk subgroups with significantly different prognostic statuses, and our model was independent of other clinical factors. Time-dependent ROC showed high predictive performance of the model.
CONCLUSIONS
A multigene model was established from RNA-sequencing data to direct risk classification and predict relapse of hormone receptor-positive breast cancer in Chinese patients. Utilization of the model could provide individualized evaluation of chemotherapy after surgery for breast cancer patients.
Humans
;
Female
;
Breast Neoplasms/genetics*
;
East Asian People
;
Neoplasm Recurrence, Local/genetics*
;
Breast
;
Algorithms
;
Chronic Disease
;
Prognosis
;
Tumor Microenvironment

Result Analysis
Print
Save
E-mail