1.Measures of improving innovation quality of medical students
Ruiting WANG ; Aimin MEI ; Yanna WANG
Chinese Journal of Medical Education Research 2012;11(2):196-198
Improving the innovation quality of medical students is the key for cultivating the medical staff with international competition. The most important point for improving the innovation quality is to establish an educational model in favor of cultivation of medical students.Adjusting curriculum system,conforming experimental content and enhancing extracurricular research activity can make for the improvement of medical stndents' innovation and cultivation of scientific research quality.
2.Expressions of zinc-finger protein 217(ZNF217)in DDP-sensitive and-resistant human ovarian cancer cell lines
Chunrong HE ; Mei ZHONG ; Aimin SUN
Medical Journal of Chinese People's Liberation Army 2001;0(08):-
Objective To explore the mRNA and protein expressions of zinc-finger protein 217(ZNF217)in cisplatin(DDP)-sensitive and DDP-resistant human ovarian cancer cell lines.Methods Six strains of ovarian cancer cells,including 3 DDP-sensitive strains(A2780,SKOV-3 and COC1)and 3 DDP-resistant strains(A2780-DDP-R,SKOV-3-DDP-R and COC1-DDP-R)were selected.The relative luminescence unit(RLU)of cells was determined with ATP assay,the IC50 value and resistance index(RI)of DDP-resistant cell lines were calculated.Intracellular localization of ZNF217 protein in the 6 ovarian tumor cell lines was detected by immunofluorescent cytochemistry.The expressions of ZNF217 mRNA and protein were determined by RT-PCR and Western blotting,respectively.Results The IC50 values of DDP to A2780 and A2780-DDP-R were 18.1?2.3mg/L and 47.9?3.8mg/L(P
3.Serum levels of CXC chemokine ligand 10 and chemokine receptors in patients with type 1 diabetes mellitus
Fengyan ZENG ; Wenhui SONG ; Xiaojuan CHEN ; Mei FENG ; Bingmei YAN ; Caiyun LIU ; Aimin HAN
Chinese Journal of Endocrinology and Metabolism 2013;(1):35-36
Serum levels of CXC chemokine ligand 10 (CXCL10) and chemokine receptor 3 (CXCR3) were determined in 50 patients with type 1 diabetes mellitus (T1 DM) and 30 normal control subjects by ELISA method.The results showed that serum levels of CXCL10 and CXCR3 in T1DM patients were significantly higher than those in normal subjects [(258.17 ± 39.12 vs 96.47 ± 26.91) ng/L,(851.87 ± 70.04 vs 441.82 ± 72.24) pg/ml,both P<0.05].Serum level of CXCL10 in patients dropped sequentially with durations of diabetes <6 weeks,≥6 weeks or <3 years,and ≥ 3 years,being statistically significant between groups (P<0.05).These results suggest that serum levels of CXC10 and CXCR3 may reflect the immune activity in T1DM.
4.CHINET 2014 surveillance of bacterial resistance in China
Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Zhaoxia ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Aimin WANG ; Yuanhong XU ; Jilu SHEN ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Sufei TIAN ; Jin LI ; Hong ZHANG ; Jing KONG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU
Chinese Journal of Infection and Chemotherapy 2015;(5):401-410
Objective To investigate the susceptibility and resistance of clinical isolates from hospitals in several regions of China .Methods Fifteen general hospitals and two children′s hospitals were involved in this program . Antimicrobial susceptibility testing was carried out according to a unified protocol using Kirby‐Bauer method or automated systems .Results were analyzed according to CLSI 2014 breakpoints .Results A total of 78 955 clinical isolates were collected from January to December 2014 ,of which gram negative organisms and gram positive cocci accounted for 72 .6% and 27 .4% ,respectively . Methicillin‐resistant strains in S .aureus(MRSA)and coagulase negative Staphylococcus(MRCNS)accounted for an average of 44 .6% and 83 .0 % ,respectively .The resistance rates of methicillin‐resistant strains to β‐lactams and other antimicrobial agents were much higher than those of methicillin‐susceptible strains .However ,92 .0% of MRSA strains were still susceptible to trimethoprim‐sulfamethoxazole ,while 85 .6% of MRCNS strains were susceptible to rifampin .No staphylococcal strains were found resistant to vancomycin ,teicoplanin or linezolid .In Enterococcus spp .,the resistance rates of E .f aecalis strains to most tested drugs (except chloramphenicol) were much lower than those of E . f aecium .Some strains of both species were resistant to vancomycin .Vancomycin resistant strains of E . f aecalis and E . f aecium were mainly V anA ,V anB or V anM type based on their phenotype or genotype .Regarding non‐meningitis S .pneumoniae strains ,the prevalence of penicillin‐susceptible S .pneumoniae strains isolated from both adults and children were higher than those isolated in 2013 ,but the prevalence of penicillin‐intermediate S . pneumoniae or penicillin‐resistant S . pneumoniae strains decreased . The prevalence of ESBLs producingstrainswas55.8% in E.coliand29.9% in Klebsiellaspp.(K.pneumoniaeand K.oxytoca)and24.0% in Proteus mirabilis isolates on average . ESBLs‐producing Enterobacteriaceae strains were more resistant than non‐ESBLs‐producing strains in terms of antibiotic resistance rates . The strains of Enterobacteriaceae were still highly susceptible to carbapenems .Overall less than 10 % of these strains were resistant to carbapenems . About 62 .4% and 66 .7% of Acinetobacter spp .(A .baumannii accounts for 93 .0 % ) strains were resistant to imipenem and meropenem ,respectively . Compared with the data of year 2013 ,extensively‐drug resistant strains in K . pneumoniae and A .baumannii increased . Conclusions The antibiotic resistance of clinical bacterial isolates is growing .The disseminated multi‐drug or pan‐drug resistant strains in a special region poses a serious threat to clinical practice and implies the importance of strengthening infection control .
5.Clinical value of noninvasive cardiac index test in the evaluation of neonatal congenital heart disease complicated with heart failure
Yonghua YUAN ; Aimin ZHANG ; Xuehua HE ; Jun XU ; Furong HUANG ; Liping LIU ; Zhenyu LIU ; Xiaohui XIA ; Mei LV ; Aitong QIANLI ; LI ZHU
Journal of Clinical Pediatrics 2017;35(10):747-750
Objective To explore the clinical value of the monitoring of electronic cardiac index (CI) in the evaluation of neonatal congenital heart disease complicated with heart failure. Methods Sixty neonates with congenital heart disease treated in neonatal department from March 1, 2016 to December 30, 2016 were selected, and divided into severe group (n=11), moderate group (n=15), mild group (n=34), and no heart failure group (n=10) according to the modified Ross heart failure score. CI was measured by electronic force measurement. Left ventricular ejection fraction (LVEF) and pulmonary arterial pressure (PAP) were measured by echocardiography. Venous blood sampling was collected to detect the N-terminal type B brain natriuretic peptide (NT-proBNP). Results The neonates in the severe group were mainly under 2-week-old, while those in the mild group and the moderate group were more than 2-week-old. The differences of CI, LVEF, NT-proBNP, and PAP among the groups were statistically different. The CI and LVEF values were lowest in the severe group, followed by moderate group and mild group, and the highest in no heart failure group. The NT-proBNP and PAP values were the highest in the severe group, followed by moderate group and mild group, and the lowest in no heart failure group. Correlation analysis showed that CI was positively correlated with LVEF (r=0.845, P<0.001), and negatively correlated with NT-proBNP (r=-0.886, P<0.001); CI and PAP were weakly negatively correlated (r=-0.595, P<0.001). Conclusions CI reflects the degree of heart failure to some extent and has some clinical value.
6.Changing resistance proifle ofProteus, Serratia, Citrobacter, Morganella andProvidencia isolates in hospitals across China:data from CHINET Antimicrobial Resistance Surveillance Program 2005-2014
Jin LI ; Zhidong HU ; Fu WANG ; Demei ZHU ; Fupin HU ; Ziyong SUN ; Zhongju CHEN ; Yi XIE ; Mei KANG ; Yingchun XU ; Xiaojiang ZHANG ; Zhaoxia ZHANG ; Ping JI ; Chuanqing WANG ; Aimin WANG ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Yunzhuo CHU ; Sufei TIAN ; Yuanhong XU ; Jilu SHEN ; Bin SHAN ; Yan DU ; Chao ZHUO ; Danhong SU ; Hong ZHANG ; Jing KONG ; Lianhua WEI ; Ling WU ; Yunjian HU ; Xiaoman AI ; Yanqiu HAN ; Sufang GUO ; Qing YANG ; Bei JIA ; Wenxing HUANG
Chinese Journal of Infection and Chemotherapy 2016;16(3):284-293
Objective To understand the changing resistance proifle ofProteus,Serratia,Citrobacter,Morganella andProvidencia in hospitals across China according to the data from CHINET Antimicrobial Resistance Surveillance Program 2005-2014.Methods Antimicrobial susceptibility was tested by using Kirby-Bauer method or automatic minimum inhibitory concentration determination according to a uniifed protocol.Results A total of 21 663 clinical isolates were collected from January 2005 to December 2014. The proportion ofProteus andSerratia isolates increased with time from 1.41% in 2005 to 2.09% in 2014, and from 0.99% in 2005 to 1.28% in 2014 among all the isolates. No change was found for the proportion ofCitrobacter,Morganella, orProvidencia. Less than 10% of theProteus isolates were resistant to cefoperazone-sulbactam, piperacillin-tazobactam, ceftazidime, cefoxitin, amikacin and tigecycline. Less than 10% of theSerratia isolates were resistant to cefoperazone-sulbactam, piperacillin-tazobactam, amikacin and tigecycline. Less than 20% of theCitrobacter isolates were resistant to cefoperazone-sulbactam, piperacillin-tazobactam, cefepime, amikacin and tigecycline. Less than 10% of theMorganella isolates were resistant to cefoperazone-sulbactam, piperacillin-tazobactam, cefepime, amikacin and tigecycline. Less than 20% of theProvidencia isolates were resistant to cefoperazone-sulbactam, piperacillin-tazobactam, cefepime, cefoxitin and tigecycline.Conclusions The antibiotic resistance ofProteus,Serratia, Citrobacter,Morganella andProvidencia isolates in hospitals across China is growing during the period from 2005 to 2014. Strengthening infection control and rational antibiotic use are effective to slow the growth of drug resistance.
7.Antibiotic resistance profile of Enterobacter in hospitals across China:data from CHINET Antimicrobial Resistance Surveillance Program from 2005 through 2014
Lei TIAN ; Zhongju CHEN ; Ziyong SUN ; Yingchun XU ; Xiaojiang ZHANG ; Yuxing NI ; Jingyong SUN ; Fu WANG ; Demei ZHU ; Yuanhong XU ; Jilu SHEN ; Hong ZHANG ; Jing KONG ; Qing YANG ; Lianhua WEI ; Ling WU ; Zhidong HU ; Jin LI ; Chuanqing WANG ; Aimin WANG ; Chao ZHUO ; Danhong SU ; Yi XIE ; Mei KANG ; Bin SHAN ; Yan DU ; Zhaoxia ZHANG ; Ping JI ; Yunjian HU ; Xiaoman AI ; Yunzhuo CHU ; Sufei TIAN ; Bei JIA ; Wenxiang HUANG ; Yunsong YU ; Jie LIN ; Yanqiu HAN ; Sufang GUO
Chinese Journal of Infection and Chemotherapy 2016;16(3):275-283
Objective To investigate the distribution and antibiotic resistance proifle of clinicalEnterobacter isolates using the data from CHINET during the period from 2005 through 2014.Methods A total of 20 558 clinical strains ofEnterobacter spp. were collected from 2005 to 2014 in CHINET Antimicrobial Resistance Surveillance Program. Antimicrobial susceptibility testing was performed with Kirby-Bauer or minimum inhibitory concentration method. The results were analyzed according to CLSI 2014 breakpoints.ResultsEnterobacter cloacae andEnterobacter aerogenes accounted for 71.1% (14 617/20558) and 20.1% (4 129/20 558) of all theEnterobacterisolates, respectively. The proportion ofEnterobacter spp. increased with time from 3.5% in 2005 to 4.3% in 2014. The main source of the isolates was respiratory tract, accounting for 55.2% (11 358/20 558). More than 90% of theEnterobacterisolates were resistant to cefazolin and cefoxitin, but less than 30% of the strains were resistant to cefepime, piperacillin-tazobactam, cefoperazone-sulbactam, amikacin, gentamicin, ciprolfoxacin, meropenem, imipenem and ertapenem. TheEnterobacterisolates showed a trend of declining resistance to most antibiotics except ertapenem and meropenem. The resistance proifle ofEnterobacterisolates varied with departments where they were isolated. The strains from ICU and Department of Surgery were relatively more resistant to antibiotics. The prevalence of multi-drug resistant (MDR) strains was decreasing, but the prevalence of carbapenem-resistantEnterobacter (CRE, resistant to any of imipenem, meropenem or ertapenem) was increasing. The MDR and CRE strains were primarily isolated from ICU and Department of Surgery. At least 30% of the MDREnterobacter strains were resistant to any of the antimicrobial agents tested except meropenem, imipenem and ertapenem and at least 35% of the CRE strains were resistant to any of the antimicrobial agents tested except amikacin and ciprolfoxacin.Conclusions TheEnterobacter isolates in CHINET Antimicrobial Resistance Surveillance Program showed decreasing resistance to most of the antimicrobial agents tested since 2011, but the prevalence of CRE strains increased progressively. Effective measures should be carried out to prevent the spread of CRE strains in hospitals.
8.Changing susceptibility ofKlebsiella strains in hospitals across China:data from the CHINET Antimicrobial Resistance Surveillance Program, 2005-2014
An XU ; Chao ZHUO ; Danhong SU ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Zhidong HU ; Jin LI ; Zhaoxia ZHANG ; Ping JI ; Chuanqing WANG ; Aimin WANG ; Qing YANG ; Yuanhong XU ; Jilu SHEN ; Bin SHAN ; Yan DU ; Hong ZHANG ; Jing KONG ; Lianhua WEI ; Ling WU ; Yi XIE ; Mei KANG ; Yunjian HU ; Xiaoman AI ; Yunsong YU ; Jie LIN ; Wenxiang HUANG ; Bei JIA ; Yunzhuo CHU ; Sufei TIAN ; Yanqiu HAN ; Sufang GUO
Chinese Journal of Infection and Chemotherapy 2016;16(3):267-274
Objective To evaluate the changing pattern of antibiotic resistance inKlebsiella strains isolated from the patients in 19 hospitals across China based on the data from CHINET Antimicrobial Resistance Surveillance Program during the period from 2005 through 2014.Methods Kirby-Bauer disk diffusion and automated susceptibility testing methods were used to test the susceptibility ofKlebsiella isolates to the commonly used antibiotics. The results were interpreted according to the criteria of the Clinical and Laboratory Standards Institute (CLSI) Performance Standards for Antimicrobial Susceptibility Testing (CLSI-2014).Results A total of 61 406Klebsiella strains were identified between 2005 and 2014, includingK. pneumoniae (56 281 strains), K. oxytoca(4 779),Klebsiella pneumoniae subsp.Ozaenae (300) and otherKlebsiella species (46). Most (89.0%, 54 664/61 406) of theKlebsiella strains were isolated from inpatients, and 60.0% (36 835/61 406) were from respiratory tract speciems. About 16.7% (10 248/61 406) of the strains were isolated from pediatric patients aged 0-17 years and 83.3% (51 158/61 406) from adult patients. The prevalence ofKlebsiella spp. increased with time from 10.1% in 2005 to 14.3% in 2014. Based on the surveillance data during the 10-year period, we found a marked increase of resistance to imipenem (2.9% to 10.5%) and meropenem (2.8% to 13.4%) inKlebsiella spp. The prevalence of ESBLs-producing isolates inK. pneumoniae andK. oxytoca decreased from 39.0% in 2005 to 30.1% in 2014. The resistance to amikacin, ceftazidime, ciprolfoxacin, pipracillin-tazobactam and cefoperazone-sulbactam was on decline. The resistance rate to cefotaxime remained high about 49.5%. Carbapenem resistantance was identiifed in 5 796 (9.4%) of the isolates, including 5 492 strains ofK. pneumoniae and 280 strains ofK. oxytoca. Overall, 4 740 (7.8%) strains were identiifed as extensively-drug resistant (XDR), including 4 520 strains ofK. pneumoniae and 202 strains ofK. oxytoca. The carbapenem-resistant strains showed high (>60%) resistance rate to majority of the antimicrobial agents tested, but relatively low resistance to tigecycline (16.8%), amikacin (54.4%), and trimethoprim-sulfamethoxazole (55.5%).Conclusions During the 10-year period from 2005 through 2014, carbapenem resistance amongKlebsiella isolates has increased dramatically in the hospitals across China. The level of resistance to other antibiotics remains stable.
9.CHINET 2013 surveillance of bacterial resistance in China
Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Ziyong SUN ; Zhongju CHEN ; Zhidong HU ; Jin LI ; Yi XIE ; Mei KANG ; Yingchun XU ; Xiaojiang ZHANG ; Zhaoxia ZHANG ; Ping JI ; Chuanqing WANG ; Aimin WANG ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Yunzhuo CHU ; Sufei TIAN ; Yuanhong XU ; Jilu SHEN ; Bin SHAN ; Yan DU ; Chao ZHUO ; Danhong SU ; Hong ZHANG ; Jing KONG ; Lianhua WEI ; Ling WU ; Yunjian HU ; Xiaoman AI
Chinese Journal of Infection and Chemotherapy 2014;(5):365-374
Objective To investigate the susceptibility and resistance of clinical isolates collected from hospitals in several regions of China . Methods Fourteen general hospitals and two children ’ s hospitals were involved in this program . Antimicrobial susceptibility testing was carried out according to a unified protocol using Kirby-Bauer method or automated Systems .Results were analyzed according to CLSI 2013 breakpoints .Results A total of 84 572 clinical isolates were collected from January to December 2013 ,of which gram negative organisms and gram positive cocci accounted for 73 .0% and 27 .0%respectively .Methicillin-resistant strains in S .aureus (MRSA) and coagulase negative Staphylococcus (MRCNS) accounted for an average of 45 .2% and 73 .5% respectively .The resistance rates of methicillin-resistant strains to β-lactams and other antimicrobial agents were much higher than those of methicillin-susceptible strains .However ,92 .2% of MRSA strains were still susceptible to trimethoprim-sulfamethoxazole while 87 .4% of MRCNS strains were susceptible to rifampin . No staphylococcal strains were found resistant to vancomycin ,teicoplanin or linezolid .In Enterococcus spp .,the resistance rates of E . f aecalis strains to most tested drugs (except chloramphenicol) were much lower than those of E . f aecium .Some strains of both species were resistant to vancomycin .Vancomycin-resistant strains of E . f aecalis and E . f aecium were mainly VanA type based on their phenotype .Regarding non-meningitis S . pneumoniae strains ,the prevalence of penicillin-susceptible S . pneumoniae and penicillin-intermediate S . pneumoniae strains isolated from both adults and children were lower than those isolated in 2012 ,but the prevalence of penicillin-resistant S .pneumoniae strains increased .The prevalence of ESBLs producing strains was 54 .0% in E .coli ,31 .8% in Klebsiella spp .(K .pneumoniae and K .oxytoca) and 16 .5% in Proteus mirabilis isolates on average . ESBLs-producing Enterobacteriaceae strains were more resistant than non-ESBLs-producing strains in terms of antibiotic resistance rates .The strains of Enterobacteriaceae were still highly susceptible to carbapenems .Overall less than 7 .0% of these strains were resistant to carbapenems .About 62 .8% and 59 .4% of Acinetobacter spp .(A .baumannii accounts for 89 .2% ) strains were resistant to imipenem and meropenem ,respectively .Compared with the data of year 2012 , extensively-drug resistant strains in K . pneumoniae and A . baumannii decreased .Conclusions The antibiotic resistance of clinical bacterial isolates is growing in 2013 .The disseminated multi-drug or pan-drug resistant strains in a special region poses a serious threat to clinical practice and implies the importance of strengthening infection control .
10.Antimicrobial resistance profile of clinical isolates in hospitals across China: report from the CHINET Surveillance Program, 2017
Fupin HU ; Yan GUO ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Zhaoxia ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Aimin WANG ; Yuanhong XU ; Jilu SHEN ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Dawen GUO ; Jinying ZHAO ; Wenen LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Kaizhen WEN ; Yirong ZHANG ; Xuesong XU ; Chao YAN ; Hua YU ; Xiangning HUANG ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Hongyan ZHENG ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU
Chinese Journal of Infection and Chemotherapy 2018;18(3):241-251
Objective To investigate the antimicrobial resistance profile of the clinical isolates collected from selected hospitals across China. Methods Twenty-nine general hospitals and five children's hospitals were involved in this program. Antimicrobial susceptibility testing was carried out according to a unified protocol using Kirby-Bauer method or automated systems. Results were interpreted according to CLSI 2017 breakpoints. Results A total of 190 610 clinical isolates were collected from January to December 2017, of which gram negative organisms accounted for 70.8% (134 951/190 610) and gram positive cocci 29.2% (55 649/190 610). The prevalence of methicillin-resistant strains was 35.3% in S. aureus (MRSA) and 80.3% in coagulase negative Staphylococcus (MRCNS) on average. MR strains showed much higher resistance rates to most of the other antimicrobial agents than MS strains. However, 91.6% of MRSA strains were still susceptible to trimethoprim-sulfamethoxazole, while 86.2% of MRCNS strains were susceptible to rifampin. No staphylococcal strains were found resistant to vancomycin. E. faecalis strains showed much lower resistance rates to most of the drugs tested (except chloramphenicol) than E. faecium. Vancomycin-resistant Enterococcus (VRE) was identified in both E. faecalis and E. faecium. The identified VRE strains were mainly vanA, vanB or vanM type based on phenotype or genotype. The proportion of PSSP or PRSP strains in the non-meningitis S.pneumoniae strains isolated from children decreased but the proportion of PISP strains increased when compared to the data of 2016. Enterobacteriaceae strains were still highly susceptible to carbapenems. Overall, less than 10% of these strains (excluding Klebsiella spp.) were resistant to carbapenems. The prevalence of imipenem-resistant K. pneumoniae increased from 3.0% in 2005 to 20.9% in 2017, and meropenem-resistant K. pneumoniae increased from 2.9% in 2005 to 24.0% in 2017, more than 8-fold increase. About 66.7% and 69.3% of Acinetobacter (A. baumannii accounts for 91.5%) strains were resistant to imipenem and meropenem, respectively. Compared with the data of year 2016, P. aeruginosa strains showed decreasing resistance rate to carbapenems. Conclusions Bacterial resistance is still on the rise. It is necessary to strengthen hospital infection control and stewardship of antimicrobial agents. The communication between laboratorians and clinicians should be further improved in addition to surveillance of bacterial resistance.