1.Cold stimulation regulates lipid metabolism and the secretion of exosomes from subcutaneous adipose tissue in mice.
Shuo KE ; Li XU ; Rui-Xue SHI ; Jia-Qi WANG ; Le CUI ; Yuan JI ; Jing LI ; Xiao-Hong JIANG
Acta Physiologica Sinica 2025;77(2):231-240
Cold has been a long-term survival challenge in the evolutionary process of mammals. In response to cold stress, in addition to brown adipose tissue (BAT) dissipating energy as heat through glucose and lipid oxidation to maintain body temperature, cold stimulation can strongly activate thermogenesis and energy expenditure in beige fat cells, which are widely distributed in the subcutaneous layer. However, the effects of cold stimulation on other tissues and systemic lipid metabolism remain unclear. Our previous research indicated that, under cold stress, BAT not only produces heat but also secretes numerous exosomes to mediate BAT-liver crosstalk. Whether subcutaneous fat has a similar mechanism is still unknown. Therefore, this study aimed to investigate the alterations in lipid metabolism across various tissues under cold exposure and to explore whether subcutaneous fat regulates systemic glucose and lipid metabolism via exosomes, thereby elucidating the regulatory mechanisms of lipid metabolism homeostasis under physiological stress. RT-qPCR, Western blot, and H&E staining methods were used to investigate the physiological changes in lipid metabolism in the serum, liver, epididymal white adipose tissue, and subcutaneous fat of mice under cold stimulation. The results revealed that cold exposure significantly enhanced the thermogenic activity of subcutaneous adipose tissue and markedly increased exosome secretion. These exosomes were efficiently taken up by hepatocytes, where they profoundly influenced hepatic lipid metabolism, as evidenced by alterations in the expression levels of key genes involved in lipid synthesis and catabolism pathways. This study has unveiled a novel mechanism by which subcutaneous fat regulates lipid metabolism through exosome secretion under cold stimulation, providing new insights into the systemic regulatory role of beige adipocytes under cold stress and offering a theoretical basis for the development of new therapeutic strategies for obesity and metabolic diseases.
Animals
;
Lipid Metabolism/physiology*
;
Mice
;
Exosomes/metabolism*
;
Cold Temperature
;
Subcutaneous Fat/physiology*
;
Thermogenesis/physiology*
;
Adipose Tissue, Brown/metabolism*
;
Male
2.Local overexpression of miR-429 sponge in subcutaneous white adipose tissue improves obesity and related metabolic disorders.
Liu YAO ; Wen-Jing XIU ; Chen-Ji YE ; Xin-Yu JIA ; Wen-Hui DONG ; Chun-Jiong WANG
Acta Physiologica Sinica 2025;77(3):441-448
Obesity is a worldwide health problem. An imbalance in energy metabolism is an important cause of obesity and related metabolic diseases. Our previous studies showed that inhibition of miR-429 increased the protein level of uncoupling protein 1 (UCP1) in beige adipocytes; however, whether local inhibition of miR-429 in subcutaneous adipose tissue affects diet-induced obesity and related metabolic disorders remains unclear. The aim of this study was to investigate the effect of local overexpression of miR-429 sponge in subcutaneous adipose tissue on obesity and related metabolic disorders. The control adeno-associated virus (AAV) or AAV expressing the miR-429 sponge was injected into mouse inguinal white adipose tissue. Seven days later, the mice were fed a high-fat diet for 10 weeks to induce obesity. The effects of the miR-429 sponge on body weight, adipose tissue weight, plasma glucose and lipid levels, and hepatic lipid content were explored. The results showed that the overexpression of miR-429 sponge in subcutaneous white adipose tissue reduced body weight and fat mass, decreased fasting blood glucose and plasma cholesterol levels, improved glucose tolerance, and alleviated hepatic lipid deposition in mice. Mechanistic investigation showed that the inhibition of miR-429 significantly upregulated the expression of UCP1 in adipocytes and adipose tissue. These results suggest that local inhibition of miR-429 in subcutaneous white adipose tissue ameliorates obesity and related metabolic disorders potentially by upregulating UCP1, and miR-429 is a potential therapeutic target for the treatment of obesity and related metabolic disorders.
Animals
;
MicroRNAs/physiology*
;
Obesity/metabolism*
;
Mice
;
Adipose Tissue, White/metabolism*
;
Metabolic Diseases
;
Subcutaneous Fat/metabolism*
;
Male
;
Uncoupling Protein 1/metabolism*
;
Diet, High-Fat
;
Mice, Inbred C57BL
3.The role of selenoproteins in adipose tissue and obesity.
Yun-Fei ZHAO ; Yu-Hang SUN ; Tai-Hua JIN ; Yue LIU ; Yang-Di CHEN ; Wan XU ; Qian GAO
Acta Physiologica Sinica 2025;77(5):939-955
Selenoproteins, as the active form of selenium, play an important role in various physiological and pathological processes, such as anti-oxidation, anti-tumor, immune response, metabolic regulation, reproduction and aging. Although the expression level of selenoproteins in adipose tissue is significantly influenced by dietary selenium intake, it is closely related to the homeostasis of adipose tissue. In this review, we summarized the role of selenoproteins in the physiological function of adipose tissue and the pathogenesis of obesity in recent years, in order to provide a rationale for developing potential therapeutic agents for the treatment of obesity and related metabolic diseases.
Selenoproteins/metabolism*
;
Adipose Tissue/physiology*
;
Obesity/metabolism*
;
Humans
;
Animals
;
Selenium
4.Network pharmacology, molecular docking, and animal experiments reveal mechanism of Zhizhu Decoction in regulating macrophage polarization to reduce adipose tissue inflammation in obese children.
Yong-Kai YIN ; Chang-Miao NIU ; Li-Ting LIANG ; Mo DAN ; Tian-Qi GAO ; Yan-Hong QIN ; Xiao-Ning YAN
China Journal of Chinese Materia Medica 2025;50(1):228-238
Network pharmacology and molecular docking were employed to predict the mechanism of Zhizhu Decoction in regulating macrophage polarization to reduce adipose tissue inflammation in obese children, and animal experiments were then carried out to validate the prediction results. The active ingredients and targets of Zhizhu Decoction were retrieved from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP). The inflammation related targets in the adipose tissue of obese children were searched against GeneCards, OMIM, and DisGeNET, and a drug-disease-target network was established. STRING was used to construct a protein-protein interaction(PPI) network and screen for core targets. R language was used to carry out Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses. AutoDock was used for the molecular docking between core targets and active ingredients. 24 SPF grade 6-week C57B/6J male mice were adaptively fed for 1 week, and 8 mice were randomly selected as the blank group. The remaining 16 mice were fed with high-fat diet for 8 weeks to onstruct a high-fat diet induced mouse obesity model. After successful modeling, the 16 mice were randomly divided into model group and Zhizhu Decoction group, with 8 mice in each group. Zhizhu Decoction group was intervened by gavage for 14 days, once a day. Blank group and model group were given an equal amount of sterile double distilled water(ddH_2O) by gavage daily. After the last gavage, serum and inguinal adipose tissue were collected from mice for testing. The morphology of inguinal adipose tissue was observed by hematoxylin-eosin(HE) staining, the levels of inflammatory factors interleukin-6(IL-6) and tumor necrosis factor-α(TNF-α)were detected by enzyme-linked immunosorbent assay(ELISA), and the protein expression of macrophage marker molecule nitric oxide synthase(iNOS) and epidermal growth factor like hormone receptor 1(F4/80) was detected by immunofluorescence staining. Network pharmacology predicted luteolin, naringenin, and nobiletin as the main active ingredients in Zhizhu Decoction and 15 core targets. KEGG pathway enrichment analysis revealed involvement in the key signaling pathway of nuclear factor κB(NF-κB). Molecular docking showed that the active ingredients of Zhizhu Decoction bound well to the core targets. Animal experiment showed that compared with the model group, Zhizhu Decoction reduced the distribution of inflammatory cytokines in the inguinal adipose tissue of mice, lowered the levels of TNF-α and IL-6 in the serum(P<0.05, P<0.01), and down-regulated the expression of iNOS and F4/80(P<0.05). The results showed that the active ingredients in Zhizhu Decoction, such as luteolin, naringenin, and nobiletin, inhibit the aggregation of macrophages in adipose tissue, downregulate their classic activated macrophage(M1) polarization, reduce the expression of inflammatory factors IL-6 and TNF-α, and thus improve adipose tissue inflammation in obese mice.
Animals
;
Drugs, Chinese Herbal/pharmacology*
;
Molecular Docking Simulation
;
Adipose Tissue/immunology*
;
Mice
;
Male
;
Humans
;
Network Pharmacology
;
Macrophages/immunology*
;
Mice, Inbred C57BL
;
Child
;
Protein Interaction Maps/drug effects*
;
Obesity/genetics*
;
Inflammation/drug therapy*
5.Correlation analysis of anterior tibiotalar fat pad classification and anterior talofibular ligament injury based on MRI.
Lei ZHANG ; Junqiu WANG ; Wen LI ; Yu XIA
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(3):271-277
OBJECTIVE:
To investigate the correlation between the anterior talofibular ligament (ATFL) injury and the pathological changes of the anterior tibiotalar fat pad (ATFP) based on MRI.
METHODS:
The clinical and imaging data of 217 patients with ankle sprain who met the selection criteria between January 2019 and March 2024 were retrospectively analyzed. There were 113 males and 104 females with an average age of 38.2 years ranging from 18 to 60 years. Patients were divided into mild group ( n=106), moderate group ( n=63), and severe group ( n=48) according to the degree of ATFL injury. There was no significant difference in gender, side, and body mass index among the 3 groups ( P>0.05). The age of the mild group was significantly older than that of the moderate and severe groups ( P<0.05). The imaging parameters including the longest and shortest sagittal axis, the largest thickness, the longest and shortest transverse axis, the ATFP area, the area of ATFP high-signal region, and the anterior distal tibial angle (ADTA) were measured according to the MRI and X-ray films of patients. According to the morphology of ATFP, the patients were divided into type Ⅰ ( n=128), type Ⅱ ( n=73), and type Ⅲ ( n=16) based on the severity of the lesions. The distribution of ATFP types, ATFP area, area of ATFP high-signal region, and the ratio of area of ATFP high-signal region to ATFP area at the same level were statistically analyzed and compared among different ATFL injury groups. Additionally, radiographic parameters were compared across different ATFP types. Spearman rank correlation analysis was used to assess the relationships between ATFP area, area of ATFP high-signal region, and the ratio of area of ATFP high-signal region to ATFP area at the same level with patient baseline data. Through analysis of the area under curve (AUC) of ROC, optimal variables were selected for quantification to predict ATFL injury.
RESULTS:
There were significant differences in ATFP types among different ATFL injury groups ( P<0.05). The mild group had a higher proportion of type Ⅰ, the moderate group had a higher proportion of type Ⅱ, and the severe group had higher proportions of both typeⅡ and type Ⅲ. No significant difference was found in ATFP area among the different ATFL injury groups ( P>0.05). However, the area of ATFP high-signal region and the ratio of area of ATFP high-signal region to ATFP area at the same level were significantly lower in the mild group compared to the moderate and severe groups ( P<0.05). Except for the longest sagittal axis, maximum thickness, and longest transverse axis, which were significantly smaller in ATFP types Ⅱ and Ⅲ compared to type Ⅰ ( P<0.05), there was no significant difference in the remaining radiographic parameters among the different ATFP types ( P>0.05). Spearman rank correlation analysis revealed that ATFP area was negatively correlated with patient gender ( P<0.05), while area of ATFP high-signal region and the ratio of area of ATFP high-signal region to ATFP area at the same level were negatively correlated with patient age ( P<0.05). Through analysis of the AUC for the response variable ATFP injury, the combined diagnostic AUC of ROC for the reciprocal of the maximum thickness and the reciprocal of the area of ATFP high-signal region was 0.839 (asymptotic P<0.001). The corresponding cutoff value when the Youden index reached its maximum was 0.570 3.
CONCLUSION
As the severity of ATFL injury increases, the ATFP undergoes gradual morphological and functional changes. Classification based on ATFP types can assist in assessing the level of ATFL injury, thereby aiding in the prevention of post-traumatic osteoarthritis.
Humans
;
Male
;
Female
;
Adult
;
Magnetic Resonance Imaging/methods*
;
Middle Aged
;
Retrospective Studies
;
Adipose Tissue/pathology*
;
Adolescent
;
Young Adult
;
Lateral Ligament, Ankle/diagnostic imaging*
;
Ankle Injuries/pathology*
6.Experimental study on promotion of skin radiation damage repair by icarin via HIF-2α/VEGF/Notch pathway to enhance the paracrine function of adipose-derived stem cells.
Yuer ZUO ; Shuangyi LI ; Siyu TAN ; Xiaohao HU ; Zhou LI ; Haoxi LI
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(7):881-890
OBJECTIVE:
To investigate the effectiveness and preliminary mechanisms of icariin (ICA) in enhancing the reparative effects of adipose-derived stem cells (ADSCs) on skin radiation damagies in rats.
METHODS:
Twelve SPF-grade Sprague Dawley rats [body weight (220±10) g] were subjected to a single dose of 10 Gy X-ray irradiation on a 1.5 cm×1.5 cm area of their dorsal skin, with a dose rate of 200 cGy/min to make skin radiation damage model. After successful modelling, the rats were randomly divided into 4 groups ( n=3), and on day 2, the corresponding cells were injected subcutaneously into the irradiated wounds: group A received 0.1 mL of rat ADSCs (1×10 7cells/mL), group B received 0.1 mL of rat ADSCs (1×10 7cells/mL)+1 μmol/L ICA (0.1 mL), group C received 0.1 mL of rat ADSCs (1×10 7cells/mL) pretreated with a hypoxia-inducible factor 2α (HIF-2α) inhibitor+1 μmol/L ICA (0.1 mL), and group D received 0.1 mL of rat ADSCs (1×10 7cells/mL) pretreated with a Notch1 inhibitor+1 μmol/L ICA (0.1 mL). All treatments were administered as single doses. The skin injury in the irradiated areas of the rats was observed continuously from day 1 to day 7 after modelling. On day 28, the rats were sacrificed, and skin tissues from the irradiated areas were harvested for histological examination (HE staining and Masson staining) to assess the repair status and for quantitative collagen content detection. Immunohistochemical staining was performed to detect CD31 expression, while Western blot and real-time fluorescence quantitative PCR (qRT-PCR) were used to measure the protein and mRNA relative expression levels of vascular endothelial growth factor (VEGF), platelet-derived growth factor BB (PDGF-BB), fibroblast growth factor 2 (FGF-2), interleukin 10 (IL-10), transforming growth factor β (TGF-β), HIF-2α, and Notch1, 2, and 3.
RESULTS:
All groups exhibited skin ulcers and redness after irradiation. On day 3, exudation of tissue fluid was observed in all groups. On day 7, group B showed significantly smaller skin injury areas compared to the other 3 groups. On day 28, histological examination revealed that the epidermis was thickened and the dermal fibers were slightly disordered with occasional inflammatory cell aggregation in group A. In group B, the epidermis appeared more normal, the dermal fibers were more orderly, and there was an increase in new blood vessels without significant inflammatory cell aggregation. In contrast, groups C and D showed significantly increased epidermal thickness, disordered and disrupted dermal fibers. Group B had higher collagen fiber content than the other 3 groups, and group D had lower content than group A, with significant differences ( P<0.05). Immunohistochemical staining showed that group B had significantly higher CD31 expression than the other 3 groups, while groups C and D had lower expression than group A, with significant differences ( P<0.05). Western blot and qRT-PCR results indicated that group B had significantly higher relative expression levels of VEGF, PDGF-BB, FGF-2, IL-10, TGF-β, HIF-2α, and Notch1, 2, and 3 proteins and mRNAs compared to the other 3 groups ( P<0.05).
CONCLUSION
ICA may enhance the reparative effects of ADSCs on rat skin radiation damage by promoting angiogenesis and reducing inflammatory responses through the HIF-2α-VEGF-Notch signaling pathway.
Animals
;
Rats, Sprague-Dawley
;
Skin/pathology*
;
Rats
;
Vascular Endothelial Growth Factor A/genetics*
;
Basic Helix-Loop-Helix Transcription Factors/genetics*
;
Signal Transduction
;
Flavonoids/pharmacology*
;
Adipose Tissue/cytology*
;
Stem Cells/cytology*
;
Receptors, Notch/metabolism*
;
Radiation Injuries, Experimental/metabolism*
;
Wound Healing/drug effects*
;
Male
7.Lymph node metastasis in the prostatic anterior fat pad and prognosis after robot-assisted radical prostatectomy.
Zhou-Jie YE ; Yong SONG ; Jin-Peng SHAO ; Wen-Zheng CHEN ; Guo-Qiang YANG ; Qing-Shan DU ; Kan LIU ; Jie ZHU ; Bao-Jun WANG ; Jiang-Ping GAO ; Wei-Jun FU
National Journal of Andrology 2025;31(3):216-221
OBJECTIVE:
To investigate lymph node metastasis (LNM) in the prostatic anterior fat pad (PAFP) of PCa patients after robot-assisted radical prostatectomy (RARP), and analyze the clinicopathological features and prognosis of LNM in the PAFP.
METHODS:
We retrospectively analyzed the clinicopathological data on 1 003 cases of PCa treated by RARP in the Department of Urology of PLA General Hospital from January 2017 to December 2022. All the patients underwent routine removal of the PAFP during RARP and pathological examination, with the results of all the specimens examined and reported by pathologists. Based on the presence and locations of LNM, we grouped the patients for statistical analysis, compared the clinicopathological features between different groups using the Student's t, Mann-Whitney U and Chi-square tests, and conducted survival analyses using the Kaplan-Meier and Log-rank methods and survival curves generated by Rstudio.
RESULTS:
Lymph nodes were detected in 77 (7.7%) of the 1 003 PAFP samples, and LNM in 11 (14.3%) of the 77 cases, with a positive rate of 1.1% (11/1 003). Of the 11 positive cases, 9 were found in the upgraded pathological N stage, and the other 2 complicated by pelvic LNM. The patients with postoperative pathological stage≥T3 constituted a significantly higher proportion in the PAFP LNM than in the non-PAFP LNM group (81.8% [9/11] vs 36.2% [359/992], P = 0.005), and so did the cases with Gleason score ≥8 (87.5% [7/8] vs 35.5% [279/786], P = 0.009). No statistically significant differences were observed in the clinicopathological features and biochemical recurrence-free survival between the patients with PAFP LNM only and those with pelvic LNM only.
CONCLUSION
The PAFP is a potential route to LNM, and patients with LNM in the PAFP are characterized by poor pathological features. There is no statistically significant difference in biochemical recurrence-free survival between the patients with PAFP LNM only and those with pelvic LNM only. Routine removal of the PAFP and independent pathological examination of the specimen during RARP is of great clinical significance.
Humans
;
Male
;
Prostatectomy/methods*
;
Robotic Surgical Procedures
;
Lymphatic Metastasis
;
Retrospective Studies
;
Prognosis
;
Prostatic Neoplasms/pathology*
;
Adipose Tissue/pathology*
;
Prostate/pathology*
;
Lymph Nodes/pathology*
;
Middle Aged
;
Aged
8.Regional adipose distribution and metabolically unhealthy phenotype in Chinese adults: evidence from China National Health Survey.
Binbin LIN ; Yaoda HU ; Huijing HE ; Xingming CHEN ; Qiong OU ; Yawen LIU ; Tan XU ; Ji TU ; Ang LI ; Qihang LIU ; Tianshu XI ; Zhiming LU ; Weihao WANG ; Haibo HUANG ; Da XU ; Zhili CHEN ; Zichao WANG ; Guangliang SHAN
Environmental Health and Preventive Medicine 2025;30():5-5
BACKGROUND:
The mechanisms distinguishing metabolically healthy from unhealthy phenotypes within the same BMI categories remain unclear. This study aimed to investigate the associations between regional fat distribution and metabolically unhealthy phenotypes in Chinese adults across different BMI categories.
METHODS:
This cross-sectional study involving 11833 Chinese adults aged 20 years and older. Covariance analysis, adjusted for age, compared the percentage of regional fat (trunk, leg, or arm fat divided by whole-body fat) between metabolically healthy and unhealthy participants. Trends in regional fat percentage with the number of metabolic abnormalities were assessed by the Jonckheere-Terpstra test. Odds ratios (ORs) and their 95% confidence intervals (CIs) were estimated by logistic regression models. All analyses were performed separately by sex.
RESULTS:
In non-obese individuals, metabolically unhealthy participants exhibited higher percent trunk fat and lower percent leg fat compared to healthy participants. Additionally, percent trunk fat increased and percent leg fat decreased with the number of metabolic abnormalities. After adjustment for demographic and lifestyle factors, as well as BMI, higher percent trunk fat was associated with increased odds of being metabolically unhealthy [highest vs. lowest quartile: ORs (95%CI) of 1.64 (1.35, 2.00) for men and 2.00 (1.63, 2.46) for women]. Conversely, compared with the lowest quartile, the ORs (95%CI) of metabolically unhealthy phenotype in the highest quartile for percent arm and leg fat were 0.64 (0.53, 0.78) and 0.60 (0.49, 0.74) for men, and 0.72 (0.56, 0.93) and 0.46 (0.36, 0.59) for women, respectively. Significant interactions between BMI and percentage of trunk and leg fat were observed in both sexes, with stronger associations found in individuals with normal weight and overweight.
CONCLUSIONS
Trunk fat is associated with a higher risk of metabolically unhealthy phenotype, while leg and arm fat are protective factors. Regional fat distribution assessments are crucial for identifying metabolically unhealthy phenotypes, particularly in non-obese individuals.
Adult
;
Aged
;
Female
;
Humans
;
Male
;
Middle Aged
;
Young Adult
;
Adipose Tissue
;
Body Fat Distribution
;
Body Mass Index
;
China/epidemiology*
;
Cross-Sectional Studies
;
Health Surveys
;
Phenotype
9.Air pollution exposure associated with decline rates in skeletal muscle mass and grip strength and increase rate in body fat in elderly: a 5-year follow-up study.
Chi-Hsien CHEN ; Li-Ying HUANG ; Kang-Yun LEE ; Chih-Da WU ; Shih-Chun PAN ; Yue Leon GUO
Environmental Health and Preventive Medicine 2025;30():56-56
BACKGROUND:
The effect of air pollution on annual change rates in grip strength and body composition in the elderly is unknown.
OBJECTIVES:
This study evaluated the effects of long-term exposure to ambient air pollution on change rates of grip strength and body composition in the elderly.
METHODS:
In the period 2016-2020, grip strength and body composition were assessed and measured 1-2 times per year in 395 elderly participants living in the Taipei basin. Exposure to ambient fine particulate matters (PM2.5), nitric dioxide (NO2), and ozone (O3) from 2015 to 2019 was estimated using a hybrid Kriging/Land-use regression model. In addition, long-term exposure to carbon monoxide (CO) was estimated using an ordinary Kriging approach. Associations between air pollution exposures and annual changes in health outcomes were analyzed using linear mixed-effects models.
RESULTS:
An inter-quartile range (4.1 µg/m3) increase in long-term exposure to PM2.5 was associated with a faster decline rate in grip strength (-0.16 kg per year) and skeletal muscle mass (-0.14 kg per year), but an increase in body fat mass (0.21 kg per year). The effect of PM2.5 remained robust after adjustment for NO2, O3 and CO exposure. In subgroup analysis, the PM2.5-related decline rate in grip strength was greater in participants with older age (>70 years) or higher protein intake, whereas in skeletal muscle mass, the decline rate was more pronounced in participants having a lower frequency of moderate or strenuous exercise. The PM2.5-related increase rate in body fat mass was higher in participants having a lower frequency of strenuous exercise or soybean intake.
CONCLUSIONS
Among the elderly, long-term exposure to ambient PM2.5 is associated with a faster decline in grip strength and skeletal muscle mass, and an increase in body fat mass. Susceptibility to PM2.5 may be influenced by age, physical activity, and dietary protein intake; however, these modifying effects vary across different health outcomes, and further research is needed to clarify their mechanisms and consistency.
Humans
;
Hand Strength
;
Aged
;
Male
;
Female
;
Environmental Exposure/adverse effects*
;
Follow-Up Studies
;
Taiwan
;
Air Pollution/adverse effects*
;
Particulate Matter/adverse effects*
;
Muscle, Skeletal/drug effects*
;
Air Pollutants/adverse effects*
;
Ozone/adverse effects*
;
Aged, 80 and over
;
Adipose Tissue/drug effects*
;
Body Composition/drug effects*
;
Nitrogen Dioxide/adverse effects*
10.Exosome derived from human adipose-derived mesenchymal stem cells prevented bone loss induced by estrogen deficiency.
Chunhui SHENG ; Xiao ZHANG ; Longwei LV ; Yongsheng ZHOU
Journal of Peking University(Health Sciences) 2025;57(2):217-226
OBJECTIVE:
To investigate the effect of human adipose-derived mesenchymal stem cells (hASCs) exosomes on osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) extracted from osteoporotic mice, and to evaluate the effect of hASCs exosomes on preventing bone loss induced by estrogen deficiency.
METHODS:
hASCs exosomes were extracted by ultracentrifugation. The osteoporotic mice were established by bilateral ovariectomy (OVX). BMSCs were isolated from osteo-porotic mice and cultured for further analysis. In the experimental group, these BMSCs were exposed to an osteogenic induction medium supplemented with hASCs exosomes to evaluate their potential effects on osteogenesis. In contrast, the control group was treated with the same osteogenic induction medium, but without the addition of hASCs exosomes, to serve as a baseline comparison for the study. To comprehensively assess the osteogenic differentiation of BMSCs influenced by hASCs exosomes, alkaline phosphatase (ALP) staining, ALP activity quantitative analysis and quantitative reverse transcription polymerase chain reaction (qPCR) were performed. These evaluations provided critical insights into the role of hASCs exosomes in promoting osteoblast differentiation and bone formation in osteoporotic conditions. The fluorescence labeled hASCs exosomes were injected via the tail vein to observe the biodistribution of exosomes. Two weeks after OVX, the mice were divided into three groups: The experimental group consisted of estrogen-deficient mice receiving hASCs exosome injections; the negative control group consisted of estrogen-deficient mice receiving phosphate-buffered saline (PBS) injections; and the positive control group consisted of mice that underwent Sham surgery and received PBS injections.The injections were administered once every 3 days, for a total of 8 injections. Afterward, the femurs were collected from the mice, and micro-computed tomography (micro-CT) was performed to measure bone mineral density and conduct bone morphometric analysis.
RESULTS:
hASCs exosomes were successfully extracted using ultracentrifugation. After the induction by hASCs exosomes, ALP staining and ALP activity in the BMSCs extracted from osteoporotic mice were significantly enhanced, the expression of osteogenesis related genes in BMSCs were significantly up-regulated. More trabecular bone and higher bone mineral density were observed in estrogen-deficient mice injected with hASCs exosomes compared with estrogen-deficient mice injected with PBS, and there was no significant decrease in bone mineral density compared with the Sham operation group.
CONCLUSION
hASCs exosomes promoted the osteogenic differentiation of BMSCs extracted from osteoporotic mice. hASCs exosomes prevented bone loss induced by estrogen deficiency.
Animals
;
Mesenchymal Stem Cells/cytology*
;
Exosomes
;
Estrogens/deficiency*
;
Humans
;
Osteogenesis
;
Cell Differentiation
;
Female
;
Mice
;
Osteoporosis/prevention & control*
;
Ovariectomy
;
Adipose Tissue/cytology*
;
Cells, Cultured

Result Analysis
Print
Save
E-mail