1.A low-dose CT reconstruction method using sub-pixel anisotropic diffusion.
Shizhou TANG ; Ruolan SU ; Shuting LI ; Zhenzhen LAI ; Jinhong HUANG ; Shanzhou NIU
Journal of Southern Medical University 2025;45(1):162-169
OBJECTIVES:
We present a new low-dose CT reconstruction method using sub-pixel and anisotropic diffusion.
METHODS:
The sub-pixel intensity values and their second-order differences were obtained using linear interpolation techniques, and the new gradient information was then embedded into an anisotropic diffusion process, which was introduced into a penalty-weighted least squares model to reduce the noise in low-dose CT projection data. The high-quality CT image was finally reconstructed using the classical filtered back-projection (FBP) algorithm from the estimated data.
RESULTS:
In the Shepp-Logan phantom experiments, the structural similarity (SSIM) index of the CT image reconstructed by the proposed algorithm, as compared with FBP, PWLS-Gibbs and PWLS-TV algorithms, was increased by 28.13%, 5.49%, and 0.91%, the feature similarity (FSIM) index was increased by 21.08%, 1.78%, and 1.36%, and the root mean square error (RMSE) was reduced by 69.59%, 18.96%, and 3.90%, respectively. In the digital XCAT phantom experiments, the SSIM index of the CT image reconstructed by the proposed algorithm, as compared with FBP, PWLS-Gibbs and PWLS-TV algorithms, was increased by 14.24%, 1.43% and 7.89%, the FSIM index was increased by 9.61%, 1.78% and 5.66%, and the RMSE was reduced by 26.88%, 9.41% and 18.39%, respectively. In clinical experiments, the SSIM index of the image reconstructed using the proposed algorithm was increased by 19.24%, 15.63% and 3.68%, the FSIM index was increased by 4.30%, 2.92% and 0.43%, and the RMSE was reduced by 44.60%, 36.84% and 15.22% in comparison with FBP, PWLS-Gibbs and PWLS-TV algorithms, respectively.
CONCLUSIONS
The proposed method can effectively reduce the noises and artifacts while maintaining the structural details in low-dose CT images.
Tomography, X-Ray Computed/methods*
;
Algorithms
;
Phantoms, Imaging
;
Anisotropy
;
Image Processing, Computer-Assisted/methods*
;
Humans
;
Radiation Dosage
2.A sparse-view cone-beam CT reconstruction algorithm based on bidirectional flow field- guided projection completion.
Wenwei LI ; Zerui MAO ; Yongbo WANG ; Zhaoying BIAN ; Jing HUANG
Journal of Southern Medical University 2025;45(2):395-408
OBJECTIVES:
We propose a sparse-view cone-beam CT reconstruction algorithm based on bidirectional flow field guided projection completion (BBC-Recon) to solve the ill-posed inverse problem in sparse-view cone-beam CT imaging.
METHODS:
The BBC-Recon method consists of two main modules: the projection completion module and the image restoration module. Based on flow field estimation, the projection completion module, through the designed bidirectional and multi-scale correlators, fully calculates the correlation information and redundant information among projections to precisely guide the generation of bidirectional flow fields and missing frames, thus achieving high-precision completion of missing projections and obtaining pseudo complete projections. The image restoration module reconstructs the obtained pseudo complete projections and then refines the image to remove the residual artifacts and further improve the image quality.
RESULTS:
The experimental results on the public datasets of Mayo Clinic and Guilin Medical University showed that in the case of a 4-fold sparse angle, compared with the suboptimal method, the BBC-Recon method increased the PSNR index by 1.80% and the SSIM index by 0.29%, and reduced the RMSE index by 4.12%; In the case of an 8-fold sparse angle, the BBC-Recon method increased the PSNR index by 1.43% and the SSIM index by 1.49%, and reduced the RMSE index by 0.77%.
CONCLUSIONS
The BBC-Recon algorithm fully exploits the correlation information between projections to allow effective removal of streak artifacts while preserving image structure information, and demonstrates significant advantages in maintaining inter-slice consistency.
Algorithms
;
Cone-Beam Computed Tomography/methods*
;
Image Processing, Computer-Assisted/methods*
;
Humans
3.A segmented backprojection tensor degradation feature encoding model for motion artifacts correction in dental cone beam computed tomography.
Zhixiong ZENG ; Yongbo WANG ; Zongyue LIN ; Zhaoying BIAN ; Jianhua MA
Journal of Southern Medical University 2025;45(2):422-436
OBJECTIVES:
We propose a segmented backprojection tensor degradation feature encoding (SBP-MAC) model for motion artifact correction in dental cone beam computed tomography (CBCT) to improve the quality of the reconstructed images.
METHODS:
The proposed motion artifact correction model consists of a generator and a degradation encoder. The segmented limited-angle reconstructed sub-images are stacked into the tensors and used as the model input. A degradation encoder is used to extract spatially varying motion information in the tensor, and the generator's skip connection features are adaptively modulated to guide the model for correcting artifacts caused by different motion waveforms. The artifact consistency loss function was designed to simplify the learning task of the generator.
RESULTS:
The proposed model could effectively remove motion artifacts and improve the quality of the reconstructed images. For simulated data, the proposed model increased the peak signal-to-noise ratio by 8.28%, increased the structural similarity index measurement by 2.29%, and decreased the root mean square error by 23.84%. For real clinical data, the proposed model achieved the highest expert score of 4.4221 (against a 5-point scale), which was significantly higher than those of all the other comparison methods.
CONCLUSIONS
The SBP-MAC model can effectively extract spatially varying motion information in the tensors and achieve adaptive artifact correction from the tensor domain to the image domain to improve the quality of reconstructed dental CBCT images.
Cone-Beam Computed Tomography/methods*
;
Artifacts
;
Humans
;
Motion
;
Image Processing, Computer-Assisted/methods*
;
Signal-To-Noise Ratio
;
Algorithms
4.A multi-scale supervision and residual feedback optimization algorithm for improving optic chiasm and optic nerve segmentation accuracy in nasopharyngeal carcinoma CT images.
Jinyu LIU ; Shujun LIANG ; Yu ZHANG
Journal of Southern Medical University 2025;45(3):632-642
OBJECTIVES:
We propose a novel deep learning segmentation algorithm (DSRF) based on multi-scale supervision and residual feedback strategy for precise segmentation of the optic chiasm and optic nerves in CT images of nasopharyngeal carcinoma (NPC) patients.
METHODS:
We collected 212 NPC CT images and their ground truth labels from SegRap2023, StructSeg2019 and HaN-Seg2023 datasets. Based on a hybrid pooling strategy, we designed a decoder (HPS) to reduce small organ feature loss during pooling in convolutional neural networks. This decoder uses adaptive and average pooling to refine high-level semantic features, which are integrated with primary semantic features to enable network learning of finer feature details. We employed multi-scale deep supervision layers to learn rich multi-scale and multi-level semantic features under deep supervision, thereby enhancing boundary identification of the optic chiasm and optic nerves. A residual feedback module that enables multiple iterations of the network was designed for contrast enhancement of the optic chiasm and optic nerves in CT images by utilizing information from fuzzy boundaries and easily confused regions to iteratively refine segmentation results under supervision. The entire segmentation framework was optimized with the loss from each iteration to enhance segmentation accuracy and boundary clarity. Ablation experiments and comparative experiments were conducted to evaluate the effectiveness of each component and the performance of the proposed model.
RESULTS:
The DSRF algorithm could effectively enhance feature representation of small organs to achieve accurate segmentation of the optic chiasm and optic nerves with an average DSC of 0.837 and an ASSD of 0.351. Ablation experiments further verified the contributions of each component in the DSRF method.
CONCLUSIONS
The proposed deep learning segmentation algorithm can effectively enhance feature representation to achieve accurate segmentation of the optic chiasm and optic nerves in CT images of NPC.
Humans
;
Tomography, X-Ray Computed/methods*
;
Optic Chiasm/diagnostic imaging*
;
Optic Nerve/diagnostic imaging*
;
Algorithms
;
Nasopharyngeal Carcinoma
;
Deep Learning
;
Nasopharyngeal Neoplasms/diagnostic imaging*
;
Neural Networks, Computer
;
Image Processing, Computer-Assisted/methods*
5.Development of an abdominal acupoint localization system based on AI deep learning.
Mo ZHANG ; Yuming LI ; Zongming SHI
Chinese Acupuncture & Moxibustion 2025;45(3):391-396
This study aims to develop an abdominal acupoint localization system based on computer vision and convolutional neural networks (CNNs). To address the challenge of abdominal acupoint localization, a multi-task CNNs architecture was constructed and trained to locate the Shenque (CV8) and human body boundaries. Based on the identified Shenque (CV8), the system further deduces key characteristics of four acupoints: Shangwan (CV13), Qugu (CV2), and bilateral Daheng (SP15). An affine transformation matrix is applied to accurately map image coordinates to an acupoint template space, achieving precise localization of abdominal acupoints. Testing has verified that this system can accurately identify and locate abdominal acupoints in images. The development of this localization system provides technical support for TCM remote education, diagnostic assistance, and advanced TCM equipment, such as intelligent acupuncture robots, facilitating the standardization and intelligent advancement of acupuncture.
Acupuncture Points
;
Humans
;
Deep Learning
;
Abdomen/diagnostic imaging*
;
Neural Networks, Computer
;
Acupuncture Therapy
;
Image Processing, Computer-Assisted
6.Large models in medical imaging: Advances and prospects.
Mengjie FANG ; Zipei WANG ; Sitian PAN ; Xin FENG ; Yunpeng ZHAO ; Dongzhi HOU ; Ling WU ; Xuebin XIE ; Xu-Yao ZHANG ; Jie TIAN ; Di DONG
Chinese Medical Journal 2025;138(14):1647-1664
Recent advances in large models demonstrate significant prospects for transforming the field of medical imaging. These models, including large language models, large visual models, and multimodal large models, offer unprecedented capabilities in processing and interpreting complex medical data across various imaging modalities. By leveraging self-supervised pretraining on vast unlabeled datasets, cross-modal representation learning, and domain-specific medical knowledge adaptation through fine-tuning, large models can achieve higher diagnostic accuracy and more efficient workflows for key clinical tasks. This review summarizes the concepts, methods, and progress of large models in medical imaging, highlighting their potential in precision medicine. The article first outlines the integration of multimodal data under large model technologies, approaches for training large models with medical datasets, and the need for robust evaluation metrics. It then explores how large models can revolutionize applications in critical tasks such as image segmentation, disease diagnosis, personalized treatment strategies, and real-time interactive systems, thus pushing the boundaries of traditional imaging analysis. Despite their potential, the practical implementation of large models in medical imaging faces notable challenges, including the scarcity of high-quality medical data, the need for optimized perception of imaging phenotypes, safety considerations, and seamless integration with existing clinical workflows and equipment. As research progresses, the development of more efficient, interpretable, and generalizable models will be critical to ensuring their reliable deployment across diverse clinical environments. This review aims to provide insights into the current state of the field and provide directions for future research to facilitate the broader adoption of large models in clinical practice.
Humans
;
Diagnostic Imaging/methods*
;
Precision Medicine/methods*
;
Image Processing, Computer-Assisted/methods*
7.Role of artificial intelligence in medical image analysis.
Lu WANG ; Shimin ZHANG ; Nan XU ; Qianqian HE ; Yuming ZHU ; Zhihui CHANG ; Yanan WU ; Huihan WANG ; Shouliang QI ; Lina ZHANG ; Yu SHI ; Xiujuan QU ; Xin ZHOU ; Jiangdian SONG
Chinese Medical Journal 2025;138(22):2879-2894
With the emergence of deep learning techniques based on convolutional neural networks, artificial intelligence (AI) has driven transformative developments in the field of medical image analysis. Recently, large language models (LLMs) such as ChatGPT have also started to achieve distinction in this domain. Increasing research shows the undeniable role of AI in reshaping various aspects of medical image analysis, including processes such as image enhancement, segmentation, detection in image preprocessing, and postprocessing related to medical diagnosis and prognosis in clinical settings. However, despite the significant progress in AI research, studies investigating the recent advances in AI technology in the aforementioned aspects, the changes in research hotspot trajectories, and the performance of studies in addressing key clinical challenges in this field are limited. This article provides an overview of recent advances in AI for medical image analysis and discusses the methodological profiles, advantages, disadvantages, and future trends of AI technologies.
Artificial Intelligence
;
Humans
;
Image Processing, Computer-Assisted/methods*
;
Neural Networks, Computer
;
Deep Learning
;
Diagnostic Imaging/methods*
8.Methods for enhancing image quality of soft tissue regions in synthetic CT based on cone-beam CT.
Ziwei FU ; Yechen ZHU ; Zijian ZHANG ; Xin GAO
Journal of Biomedical Engineering 2025;42(1):113-122
Synthetic CT (sCT) generated from CBCT has proven effective in artifact reduction and CT number correction, facilitating precise radiation dose calculation. However, the quality of different regions in sCT images is severely imbalanced, with soft tissue region exhibiting notably inferior quality compared to others. To address this imbalance, we proposed a Multi-Task Attention Network (MuTA-Net) based on VGG-16, specifically focusing the enhancement of image quality in soft tissue region of sCT. First, we introduced a multi-task learning strategy that divides the sCT generation task into three sub-tasks: global image generation, soft tissue region generation and bone region segmentation. This approach ensured the quality of overall sCT image while enhancing the network's focus on feature extraction and generation for soft tissues region. The result of bone region segmentation task guided the fusion of sub-tasks results. Then, we designed an attention module to further optimize feature extraction capabilities of the network. Finally, by employing a results fusion module, the results of three sub-tasks were integrated, generating a high-quality sCT image. Experimental results on head and neck CBCT demonstrated that the sCT images generated by the proposed MuTA-Net exhibited a 12.52% reduction in mean absolute error in soft tissue region, compared to the best performance among the three comparative methods, including ResNet, U-Net, and U-Net++. It can be seen that MuTA-Net is suitable for high-quality sCT image generation and has potential application value in the field of CBCT guided adaptive radiation therapy.
Cone-Beam Computed Tomography/methods*
;
Humans
;
Image Processing, Computer-Assisted/methods*
;
Artifacts
;
Algorithms
;
Bone and Bones/diagnostic imaging*
;
Neural Networks, Computer
9.Study on lightweight plasma recognition algorithm based on depth image perception.
Hanwen ZHANG ; Yu SUN ; Hao JIANG ; Jintian HU ; Gangyin LUO ; Dong LI ; Weijuan CAO ; Xiang QIU
Journal of Biomedical Engineering 2025;42(1):123-131
In the clinical stage, suspected hemolytic plasma may cause hemolysis illness, manifesting as symptoms such as heart failure, severe anemia, etc. Applying a deep learning method to plasma images significantly improves recognition accuracy, so that this paper proposes a plasma quality detection model based on improved "You Only Look Once" 5th version (YOLOv5). Then the model presented in this paper and the evaluation system were introduced into the plasma datasets, and the average accuracy of the final classification reached 98.7%. The results of this paper's experiment were obtained through the combination of several key algorithm modules including omni-dimensional dynamic convolution, pooling with separable kernel attention, residual bi-fusion feature pyramid network, and re-parameterization convolution. The method of this paper obtains the feature information of spatial mapping efficiently, and enhances the average recognition accuracy of plasma quality detection. This paper presents a high-efficiency detection method for plasma images, aiming to provide a practical approach to prevent hemolysis illnesses caused by external factors.
Algorithms
;
Humans
;
Hemolysis
;
Plasma
;
Deep Learning
;
Image Processing, Computer-Assisted/methods*
10.Pancreas segmentation with multi-channel convolution and combined deep supervision.
Yue YANG ; Yongxiong WANG ; Chendong QIN
Journal of Biomedical Engineering 2025;42(1):140-147
Due to its irregular shape and varying contour, pancreas segmentation is a recognized challenge in medical image segmentation. Convolutional neural network (CNN) and Transformer-based networks perform well but have limitations: CNN have constrained receptive fields, and Transformer underutilize image features. This work proposes an improved pancreas segmentation method by combining CNN and Transformer. Point-wise separable convolution was introduced in a stage-wise encoder to extract more features with fewer parameters. A densely connected ensemble decoder enabled multi-scale feature fusion, addressing the structural constraints of skip connections. Consistency terms and contrastive loss were integrated into deep supervision to ensure model accuracy. Extensive experiments on the Changhai and National Institute of Health (NIH) pancreas datasets achieved the highest Dice similarity coefficient (DSC) values of 76.32% and 86.78%, with superiority in other metrics. Ablation studies validated each component's contributions to performance and parameter reduction. Results demonstrate that the proposed loss function smooths training and optimizes performance. Overall, the method outperforms other advanced methods, enhances pancreas segmentation performance, supports physician diagnosis, and provides a reliable reference for future research.
Humans
;
Neural Networks, Computer
;
Pancreas/diagnostic imaging*
;
Image Processing, Computer-Assisted/methods*
;
Algorithms
;
Deep Learning

Result Analysis
Print
Save
E-mail