1.Clinical Study of the Complications after Drilling in Anophthamic Patients with Hydroxyapatite Implantations.
Ho Sung LEE ; Sung Joo KIM ; Sang Yeul LEE
Journal of the Korean Ophthalmological Society 1997;38(7):1089-1096
The hydroxyapatites were popularly been used as the ocular implant due to low incidence of post-operative exposure, infections, and excellent motility. For this purpose, it has been known that the drilling and peg implantations are performed after ingrowth of fibrovascularization tissue into the hydroxyapatites, so that ball and socket movement were occur. The authors reviewed 140 patients(140 eyes) who received enucleation or evisceration with the implantation of hydroxypapatite from Dec. 1991 to Jun. 1995. We performed that drilling after confirmation of the fiborvascularized hydroxyapatite by Technetium-99m-MDP bone scan, and investigated the method and complications. Among the 140 eyes(140 Patients), 39 eyes(28%) were found to have complications: 17 cases of peg extraction(44%), 10 cases of peg protrusion(26%), 4 cases of over-growth of granulation tissue(11%), 3 cases of poor motility(7%), 3 cases of hydroxyapatite exposure(7%) and 2 cases of malposition of peg(5%). Redrilling was performed in 20 eyes(51%) and exchanged by the screw peg due to re-extraction of peg in 4 eyes(20%). In a conclusion, overall the frequency of complications after drilling was about 28% and the most frequent complication was peg extraction.
Durapatite*
;
Humans
;
Hydroxyapatites
;
Incidence
2.Difference of Bonding Behavior between Four Different Kinds of Hydroxyapatite Plate and Rabbits's Bone.
Sung Soo CHUNG ; Kug Sun HONG ; Hyuk Joon YOUN ; Bong Soon CHANG ; Jin Sup YEOM ; Yeon Lim SEO ; Tae Min HONG ; Choon Ki LEE
The Journal of the Korean Orthopaedic Association 1998;33(1):158-167
The change of conditions of hydroxyapatite synthesis can affect not oniy the material properties, but also the body reaction to the hydroxyapatite implants. To find out conditions for preparing more biocompatible hydroxyapatite implants as bone graft substitute. we evaluated the biologic response to the dense synthetic hydroxyapatite implants, made with various synthetic conditions, placed in corticocancellous defects of rabbits' long bone. The hydroxyapatites were synthesized with coprecipitation technique using Ca(NO3) 4H2O and (NH4)2HPO4, made with various Ca/P ratio and aging temperatures. Four kinds of hydroxyapatites were selected to use as implants(HA I: Ca/P ratio 1.5, aging temperature 90degrees C; HA V :1.5 , 30degrees C; HA VI: 1.83, 30degrees C; and HA lX: 1.67, 30degrees C). These hydroxyapatites were pressed and sintered at l300degrees C to fabricate dense plates. Biomechanical test and rnorphological examination were performed using Instron, light microscope and electron microscope. The characteristics of hydroxyapatite powder and sintered body were more significantly affected by siarting Ca/P ratios. The bonding strength of HA IX(1.67, 30degrees C) with bone was grcatest at 4 or 8 weeks after implantation with statistically significant difference(p<0.05). Bonding behavior betweeb HA IX and bone was most excellent in terms of new bone formation and new bone ingrowth into resorbed surface of hydroxyapatite plate.
Aging
;
Durapatite*
;
Hydroxyapatites
;
Osteogenesis
;
Transplants
3.Bone Union Rate Following Instrumented Posterolateral Lumbar Fusion: Comparison between Demineralized Bone Matrix versus Hydroxyapatite.
Asian Spine Journal 2016;10(6):1149-1156
STUDY DESIGN: Retrospective study. PURPOSE: To compare the union rate of posterolateral lumbar fusion (PLF) using demineralized bone matrix (DBM) versus hydroxyapatite (HA) as bone graft extender. OVERVIEW OF LITERATURE: To our knowledge, there has been no clinical trial to compare the outcomes of DBM versus HA as a graft material for PLF. METHODS: We analyzed prospectively collected data from consecutive 79 patients who underwent instrumented PLF. Patients who received DBM were assigned to group B (n=38), and patients who received HA were assigned into group C (n=41). The primary study outcome was fusion rate assessed with radiographs. The secondary outcomes included pain intensity using a visual analogue scale, functional outcome using Oswestry disability index score, laboratory tests of inflammatory profiles and infection rate. RESULTS: One year postoperatively, bone fusion was achieved in 73% in group B and 58% in group C without significant difference between the groups (p=0.15). There were no differences between the groups with respect to secondary outcomes. CONCLUSIONS: DBM would provide noninferior outcomes compared to the HA as a fusion material for PLF, and could be a notable alternative.
Bone Matrix*
;
Durapatite*
;
Humans
;
Hydroxyapatites
;
Prospective Studies
;
Retrospective Studies
;
Transplants
4.Histomorphometric evaluation of bone healing with fully interconnected microporous biphasic calcium phosphate ceramics in rabbit calvarial defects.
Jong Sik LEE ; Seok Kyu CHOI ; Gyeong Ho RYOO ; Kwang Bum PARK ; Je Hee JANG ; Jae Mok LEE ; Jo Young SUH ; Jin Woo PARK
The Journal of the Korean Academy of Periodontology 2008;38(2):117-124
PURPOSE: The purpose of this study was to histomorphometrically evaluate the osteoconductivity of a new biphasic calcium phosphate ceramics with fully interconnected microporous structure. MATERIAL AND METHODS: Osseous defects created in the rabbit calvaria were filled with four different bone graft substitutes. Experimental sites were filled with a new fully interconnected microporous biphasic calcium phosphate with(BCP-2) or without(BCP-1) internal macropore of 400micrometer in diameter. MBCP(Biomatlante, France) and Bio-Oss(Geistlich Pharma, Switzerland) were used as controls in this study. Histomorphometric evaluation was performed at 4 and 8 weeks after surgery. RESULT: In histologic evaluation, new bone formation and direct bony contact with the graft particles were observed in all four groups. At 4 weeks, BCP-1(15.5%) and BCP-2(15.5%) groups showed greater amount of newly formed mineralized bone area(NB%) compared to BO(11.4%) and MBCP(10.3%) groups. The amounts of NB% at 8 weeks were greater than those of 4 weeks in all four groups, but there was no statistically significant differences in NB% between the groups. CONCLUSION: These results indicate that new bone substitutes, BCP with interconnected microporous structure and with or without internal macroporous structures, have the osteoconductivity comparable to those of commercially available bone substitutes, MBCP and Bio-Oss.
Bone Substitutes
;
Calcium
;
Ceramics
;
Hydroxyapatites
;
Minerals
;
Osteogenesis
;
Skull
;
Transplants
5.Forehead Reconstruction with Hydroxyapatite Cement(Mimix(TM)) and the Check Framework.
Hyun Woo CHO ; Beyoung Yun PARK
Journal of the Korean Society of Plastic and Reconstructive Surgeons 2008;35(2):219-222
PURPOSE: The purpose of this study is to develop hydroxyapatite cement simplified procedures for reconstruction of craniofacial deformities. Due to its expense and characteristics of quick hardening time, it may be inappropriate for forehead reconstruction or augmentation. Therefore we hear by introduce a more precise, easy and cheap method. The authors report forehead reconstruction with hydroxyapatite cement for a patient who suffered from craniofacial deformity. METHODS: Case report and literature review. RESULTS: A 35 year old man came to us with forehead and temporal area depression. He had a history of brain operations due to traumatic epidural hematoma. A physical exam showed an evidence of right side forehead weakness sign. Authors made RP model of his skull and applied check framework with Kirschner's wires for measuring accurate volume and contour on the depressed right side forehead area on the RP model. After complete exposure of defect area by bicoronary insicion, absorbable plate which applied on skull area was removed. Using three Kirschner's wires, authors made check framework on the right forehead lively and fixed with 2-hole miniplates on the boundary of the defect. After checking asymmetry, hydroxyapatite was applied on check shape framework just above Kirschner's wire. After removing Kirschner's wire, we corrected minimal unbalance and contour with bur. CONCLUSION: Check framework with Kirschner's wire was very convenient and cost saving methods for forehead reconstruction with hydroxyapatite cement.
Brain
;
Congenital Abnormalities
;
Cost Savings
;
Depression
;
Durapatite
;
Forehead
;
Hematoma
;
Humans
;
Hydroxyapatites
;
Porphyrins
;
Skull
6.rhBMP-2 using biphasic calcium phosphate block as a carrier induces new bone formation in a rat subcutaneous tissue.
Joon Il KIM ; Jeong Ho YUN ; Gyung Joon CHAE ; Sung Won JUNG ; Chang Sung KIM ; Kyoo Sung CHO
The Journal of the Korean Academy of Periodontology 2008;38(Suppl):355-362
PURPOSE: The carrier for the delivery of bone morphogenetic proteins(BMPs) should also serve as a scaffold for new bone growth. In addition, predictable bone formation in terms of the volume and shape should be guaranteed. This study evaluated the ectopic bone formation of recombinant human BMP-2(rhBMP-2) using a micro macroporous biphasic calcium phosphate (MBCP: mixture of betaTCP and HA) block as a carrier in a rat subcutaneous assay model. MATERIALS AND METHODS: Subcutaneous pockets were created on the back of 40 male Sprague-Dawley rats. In the pockets, rhBMP-2/MBCP and MBCP alone were implanted. The blocks were evaluated by histological and histometric parameters after a healing interval of 2 weeks (each 10 rats; MBCP and rhBMP-2/MBCP) or 8 weeks (each 10 rats; MBCP and rhBMP-2/MBCP). RESULTS: The shape and volume of the block was maintained stable over the healing period. No histological bone forming activity was observed in the MBCP alone sites after 2 weeks and there was minimal new bone formation at 8 weeks. In the rhBMP-2/MBCP sites, new bone formation was evident in the macropores of the block. The new bone area at 8 weeks was greater than at 2 weeks. There was a further increase in the quantity of new bone with the more advanced stage of remodeling. CONCLUSIONS: A MBCP block could serve as a carrier system for predictable bone tissue engineering using rhBMPs.
Animals
;
Bone and Bones
;
Bone Development
;
Calcium
;
Humans
;
Hydroxyapatites
;
Male
;
Osteogenesis
;
Rats
;
Rats, Sprague-Dawley
;
Subcutaneous Tissue
7.Effect of MBCP block as carrier of rhBMP-2 in combination with ePTFE membrane on bone formation in rat calvarial defects.
Chul Woo SHIN ; Kyoo Sung CHO ; Sung Won JUNG ; Chang Sung KIM ; Seong Ho CHOI ; Jeong Ho YUN
The Journal of the Korean Academy of Periodontology 2008;38(Suppl):325-334
PURPOSE: The carrier used as delivery agent for bone morphogenetic proteins(BMPs) should also act as a scaffold for new bone formation. Moreover, bone formation should be predictable in terms of the volume and shape. This study examined the osteogenic effect of macroporous biphasic calcium phosphate (MBCP) block combined with ePTFE membrane as a carrier for recombinant human bone morphogenetic proteins (rhBMP-2). In addition, the additive effect of ePTFE membrane on bone formation was evaluated. MATERIALS AND METHODS: Eight-millimeter critical sized calvarial defects were created surgically in 28 male Sprague-Dawley rats. The animals were divided into 2 groups containing 14 animals each. The defects were treated with either rhBMP-2/MBCP block (rhBMP-2/MBCP group) or rhBMP-2/MBCP block/ePTFE membrane (rhBMP-2/MBCP/ePTFE group). A disc-shaped MBCP block (3 mm height and 8 mm diameter) was used as the carrier for the rhBMP-2 and ePTFE membrane was used to cover the rhBMP-2/MBCP block. The histologic and histometric parameters were used to evaluate the defects after 2- or 8-week healing period (7 animals/group/healing interval). RESULTS: The level of bone formation in the defects of both groups was significantly higher at 8 weeks than that at 2 weeks (P < 0.05). The ePTFE membrane has no additional effect compared with the rhBMP-2/MBCP block only. However, at 8 weeks, rhBMP-2/MBCP/ePTFE group showed more even bone formation on the top of the MBCP block than the rhBMP-2/MBCP group. CONCLUSION: These results suggest that the ePTFE membrane has no additive effect on bone formation when a MBCP block is used as a carrier for rhBMP-2.
Animals
;
Bone Morphogenetic Proteins
;
Calcium
;
Durapatite
;
Humans
;
Hydroxyapatites
;
Male
;
Membranes
;
Osteogenesis
;
Rats
;
Rats, Sprague-Dawley
8.Improvement of osteogenic potential of biphasic calcium phosphate bone substitute coated with synthetic cell binding peptide sequences.
Hyunmin CHOI ; Nho Jae PARK ; Otgonbold JAMIYANDORJ ; Min Ho HONG ; Seunghan OH ; Young Bum PARK ; Sungtae KIM
Journal of Periodontal & Implant Science 2012;42(5):166-172
PURPOSE: The aim of this study was to evaluate the improvement of osteogenic potential of biphasic calcium phosphate (BCP) bone substitute coated with synthetic cell-binding peptide sequences in a standardized rabbit sinus model. METHODS: Standardized 6-mm diameter defects were created bilaterally on the maxillary sinus of ten male New Zealand white rabbits, receiving BCP bone substitute coated with synthetic cell binding peptide sequences on one side (experimental group) and BCP bone substitute without coating (control group) on the other side. Histologic and histomorphometric analysis of bone formation was carried out after a healing period of 4 or 8 weeks. RESULTS: Histological analysis revealed signs of new bone formation in both experimental groups (4- and 8-week healing groups) with a statistically significant increase in bone formation in the 4-week healing group compared to the control group. However, no statistically significant difference in bone formation was found between the 8-week healing group and the control group. CONCLUSIONS: This study found that BCP bone substitute coated with synthetic cell-binding peptide sequences enhanced osteoinductive potential in a standardized rabbit sinus model and its effectiveness was greater in the 4-week healing group than in the 8-week healing group.
Artificial Cells
;
Bone Regeneration
;
Bone Substitutes
;
Calcium
;
Durapatite
;
Humans
;
Hydroxyapatites
;
Male
;
Maxillary Sinus
;
Oligopeptides
;
Osteogenesis
;
Rabbits
9.Preparation of thin hydroxyapatite layers on cp titanium through anodic oxidation followed with hydrothermal treatment.
Xiangrong CHENG ; Jiawei WANG ; Yining WANG ; Ge WANG ; Liqun ZHAO
Journal of Biomedical Engineering 2002;19(3):378-382
To study the method of anodic oxidation followed by hydrothermal treatment for cp titanium and to know bone response to thin hydroxyapatite layers in vivo, commercially pure titanium plates were anodized at 200 V-400 V with direct electric current density no more than 50 mA/cm2 for 15 minutes in the electrolytic trough. beta-glycerophosphate sodium(0.03-0.04 M) and calcium acetate(0.2-0.3 M) were used as electrolytes. Then, titanium plates were hydrothermal treated in the autoclave for 2 hours at 280 degrees C-300 degrees C. Polishing and grit-blasting surface was used as control to learn bone response to thin layers. Twelve rabbits were evenly divided into 3 groups, each group was implanted with 12 implants into the rabbits femoral bone. After 4, 8 and 16 weeks, implants were taken out and collected respectively and were made grinding slices. The bone-implant interface was observed with light microscope. And the bone-implant interface of polishing and layered implants after 8 weeks implantation was observed with scanning electron microscope. The element contents at the interface of polishing and layered implants before and after 8 weeks implantation were detected with EDAX. Results showed that there was hydroxyapatite(HA) precipitated on the titanium surfaceamellae bone in 8 weeks for thin HA coatings, and no HA debris were found at the interfacial zone. In addition, Ca and P content on the hydrothermal treated implant surface increased much more after implantation than that of polished implants. It was concluded that anodic oxidation followed by hydrothermal treatment could precipitate thin hydroxyapatie layer on the surface of cp titanium, which could improve early formation of woven bone and accelerate woven bone transferring to lamellae bone at the implanted site.
Animals
;
Coated Materials, Biocompatible
;
chemistry
;
Electrodes
;
Hydroxyapatites
;
chemistry
;
Materials Testing
;
Oxidation-Reduction
;
Rabbits
;
Titanium
;
chemistry
10.Preparation and physicochemical properties of scaffold materials of heterogeneous deproteinized bone.
Lei LIU ; Qi-hong LI ; Kang-lai TANG ; Liu YANG ; Yue-kui JIAN
Chinese Journal of Traumatology 2007;10(1):59-62
OBJECTIVETo prepare and observe the physicochemical properties of scaffold materials of heterogeneous deproteinized tissue-engineered bone.
METHODSDeproteinized bone was made through a series of physicochemical treatments in pig ribs and analyzed with histological observation, scanning electron microscopy, infrared spectrum, X-ray diffraction and energy dispersive analysis, Kjeldahl determination and mechanics analysis.
RESULTSInterstitial collagen fiber was positive and mucin was negative in deproteinized bone, but, both were positive in fresh bone. Deproteinized bone maintained natural pore network. Its pore size was 472.51 micromolar+/-7.02 micromolar and the porosity was 78.15%+/-6.45%. The results of infrared spectrum showed that collagen was present in deproteinized bone. Both fresh and deproteinized bone had curve of hydroxyapatite. The Ca/P ratios were 1.71+/-0.95 and 1.68+/-0.76 (P larger than 0.05), and the protein contents were 26.6%+/-2.23% and 19.1%+/-2.14% (P less than 0.05) in fresh and deproteinized bone, respectively. There was no significant difference of destruction load under compression and maximal destruction load between fresh and deproteinized bone (P larger than 0.05). The elastic modulus was higher in deproteinized bone than that in fresh bone (P less than 0.05).
CONCLUSIONSPhysicochemical properties and mechanic strength of deproteinized tissue-engineered bone meet the demands of ideal scaffold materials. But, its immunogenicity should be observed through further experiments for its clinical applications.
Animals ; Biomechanical Phenomena ; Bone and Bones ; chemistry ; physiology ; Hydroxyapatites ; Materials Testing ; Swine ; Tissue Engineering