1.T Cell Differentiation and Th17.
Korean Journal of Otolaryngology - Head and Neck Surgery 2008;51(8):688-693
No abstract available.
Cell Differentiation
2.A Rare Case of Mesothelioma Showing Micropapillary and Small Cell Differentiation with Aggressive Behavior.
Yoon Jin CHA ; Binnari KIM ; Joungho HAN ; Chin A YI ; Jae Ill ZO
Korean Journal of Pathology 2014;48(6):466-468
No abstract available.
Cell Differentiation*
;
Mesothelioma*
3.Polarity of ameloblasts and odontoblasts and their related regulators.
Yi-Jun ZHOU ; Guang-Xing YAN ; Cang-Wei LIU ; Xue ZHANG ; Yue HU ; Xin-Qing HAO ; Huan ZHAO ; Ce SHI ; Hong-Chen SUN
West China Journal of Stomatology 2019;37(3):309-313
The polarity of ameloblasts and odontoblasts is crucial for their differentiation and function. Polarity-related molecules play an important role in this process. This review summarizes the process of polarity formation of ameloblasts and odontoblasts and their related regulators.
Ameloblasts
;
Cell Differentiation
;
Odontoblasts
4.The biological effects of fibronectin typeIII 7-10 to MC3T3-E1 osteoblast.
Jeong Ug HONG ; Sang Mook CHOI ; Soo Boo HAN ; Chong Pyoung CHUNG ; In Chul RHYU ; Yong Moo LEE ; Young KU
The Journal of the Korean Academy of Periodontology 2002;32(1):143-160
No abstract available.
Cell Differentiation
;
Cell Proliferation
;
Fibronectins*
;
Osteoblasts*
;
Titanium
5.Neural Stem Cell Competition.
Neuroscience Bulletin 2024;40(2):277-279
7.Substitution for
Hao HUANG ; Chao-Zong LIU ; Teng YI ; Maryam TAMADDON ; Shan-Shan YUAN ; Zhen-Yun SHI ; Zi-Yu LIU
Chinese Medical Sciences Journal 2021;36(4):323-332
To get an optimal product of orthopaedic implant or regenerative medicine needs to follow trial-and-error analyses to investigate suitable product's material, structure, mechanical properites etc. The whole process from
Cell Differentiation
;
Cell Movement
;
Cell Proliferation
;
Computer Simulation
;
Tissue Engineering
8.The Current Status of Directed Differentiation Technology.
Hanyang Medical Reviews 2015;35(4):215-221
The direct reprogramming of a terminally differentiated cell into another lineage using defined combinations of factors has fundamentally changed traditional concepts of the inalterability of differentiated cells. Many studies have achieved direct conversion into various cell types in recent years, and this strategy is considered to be a promising approach for inducing functional cells. Here, we review work on direct reprogramming, from the early pioneering studies to the most recent, including the discovery of novel reprogramming factors, molecular mechanisms, and strategies. We also discuss the applications of direct reprogramming and the perspectives and challenges of this novel technology.
Cell Differentiation
;
Regenerative Medicine
;
Transcription Factors
9.A Case of Follicular Adenoma Occurring in Congenital Goiter due to Dyshormogensis.
Jung Chul KIM ; Hyun Seup SIM ; Myoung Jea KANG ; Dae Yeol LEE
Journal of Korean Society of Pediatric Endocrinology 2002;7(1):112-115
Follicular adenoma is a benign encapsulated tumor with evidence of follicular cell differentiation. It is the most common thyroid neoplasm, usually solitary and has a well-defined fibrous capsule. We experienced a case of follicular adenoma occurring in congenital goiter and reported with the brief review of related literature
Adenoma*
;
Cell Differentiation
;
Goiter*
;
Thyroid Neoplasms
10.Induction of petal-like structures from petals of Crocus sativus L. and the differentiation of style-stigma-like structures in vitro.
Li WANG ; Yi LI ; Xiang-Jun DONG ; Wen-Hua XU ; Bao-Chen ZHANG
Chinese Journal of Biotechnology 2002;18(5):638-640
Firstly the petal of Crocus sativus L was cultured on the medium that supplemented with different combinations of hormones. The petal-like structures(PLS) were induced on medium, but the induction rates were different in various medium. The highest induction rate of petal-like structures was obtained on the media that was supplemented with NAA (4 mg/L) and KT (8 mg/L). The petal-like structures were subcultured on another media when the structure was produced on the explants and proliferate groups. The later media was used for inducing style-stigma-like structures(SSLS). The induction rate of style-stigma-like-structures in the petal-like structures group is much higher than the rate in the preceding work, and the maximum of style-stigma-like structures produced per explant was 30. The best result of style-stigma-like structures was observed on the petal-like structure groups which came from the third treatment. The differentiation rate of style-stigma-like structures is stable in the subcultures of petal-like structures. The result revealed that the induction frequency of style-stigma-like structures formed on the petal-like structures is higher than that form on the petals of C. sativus L.
Cell Differentiation
;
Crocus
;
growth & development
;
Culture Media