2.The study in immunology after skin transplantation.
Jun WU ; Xi-hua WANG ; Zheng-gen HUANG
Chinese Journal of Burns 2008;24(5):349-351
Skin grafting has been one of the most important approaches for covering burn wounds, however long-term survival of allogeneic or xenogeneic skin graft is currently not successful. How to induce immune tolerance for life-time survival of allogeneic or xenogeneic skin graft is still remote objective to be solved. However, clinicians and scientists in China have worked very hard and made great contribution to this field during the past 50 years, no matter how difficult it is. They are the respected pioneers in the understanding of immunological change in "Chinese Method" skin grafting, its local immune tolerance, immunology of pre-treatment of skin graft, etc. Herein, the most outstanding and impressive progresses in immunological responses after skin grafting in the past 50 years in China have been reviewed and presented for memory, for future and for extending a salute.
Humans
;
Immune Tolerance
;
Skin Transplantation
;
immunology
;
Transplantation, Heterologous
;
immunology
;
Transplantation, Homologous
;
immunology
4.Dendritic cells and transplantation immune tolerance--review.
Hui ZENG ; Guang-Sheng HE ; De-Pei WU
Journal of Experimental Hematology 2006;14(4):849-852
Dendritic cells (DC) play an important roles in the maintenance of central immune tolerance and peripheral immune tolerance. DC can be involved in formation of autoimmune tolerance by many mechanisms and demonstrate strong plasticity, so that DC become hot issue in the research of transplantation tolerance recently. In this article the DC typing and its role, the indirect pathway of DC-inducing immune tolerance, the F1t3L and apoptotic cell role, the modified DC by genetic engineering and the immune inhibitors were summarized.
Dendritic Cells
;
immunology
;
Humans
;
Immune Tolerance
;
Transplantation Tolerance
;
immunology
5.Oral And Maxillofacial Reconstruction With Bone Allograft
Journal of the Korean Association of Maxillofacial Plastic and Reconstructive Surgeons 1997;19(3):217-232
transplantation immunology, and development of tissue banking procedure has enabled oral and maxillofacial surgeons to reconstruct even the most difficult bony defects successfully with the preserved allogeneic bone implant. Now autogenous bone and allogeneic bone implants present a wide variety of surgical options to surgeons, whether used separately or in combination. The surgeons are able to make judicious and fruitful choices, only with a through knowledge of the above-mentioned biologic principles and skillful techniques. The author evaluated 116 cases where allogeneic bones were transplanted for oral and maxillofacial reconstruction.]]>
Allografts
;
Biology
;
Bone Transplantation
;
Fruit
;
Physiology
;
Tissue Banks
;
Transplantation Immunology
6.Study on the typing of immunocytes after xenogeneic or allogeneic acellular dermal matrix grafting.
Du-Yin JIANG ; Bi CHEN ; Chi-Yu JIA ; Hong ZHANG
Chinese Journal of Burns 2003;19(2):104-108
OBJECTIVETo investigate the immunologic reaction difference between xenogeneic and allogeneic acellular dermal matrix (ADM) grafting.
METHODSSplit thick skin samples harvested from healthy piglets and human volunteers who underwent losing-weight operation were processed to be xeno-ADM and allo-ADM. The ADMs overlapped with ultrathin auto-skin were employed to immediately cover the wound after escharectomy in deep burn patients. The patients were correspondingly set to be Xeno (26 cases) and Allo (10 cases) groups. Another 8 cases with deep burn wounds were grafted with only split thick autoskin (TTS) after escharectomy as control group. The tissue samples from grafted area were observed by immunohistochemistry after the grafting. The typing of immune cells in peripheral blood and grafted tissue was determined.
RESULTS(1) The CD4(+), CD45RO(+) and CD4(+)/CD8(+) cell ratios in peripheral blood in Xeno group increased slightly after the skin grafting when comparing to those in control group (P > 0.05). (2) There existed lasting inflammatory and immunological reaction in the local site of grafts in Xeno group. In addition, more than 80% of the inflammatory cells could be found to be CD3(+)/CD4(+), CD45RO(+). But CD8(+), Vs8C(+) plasmocytes and CD57(+) NK cells were found less. Furthermore, eosinophil and CD68(+)/CD4(+) foreign body megalocyte reactions could also be identified, especially in Xeno-ADM before rejection (P < 0.05 - 0.001). There was only mild inflammatory and immunological reaction during early grafting stage (within 8 post-operational weeks) in Allo-group.
CONCLUSIONThe specific immunologic reaction of human host to ADM might be participated by mononuclear cells and macrophages and presented mainly as cellular immune reaction induced by CD4(+) T lymphocytes. Furthermore, the foreign body megalocyte constructed by help T cell and macrophage might play important roles in the reaction.
Animals ; Burns ; immunology ; surgery ; Dermis ; transplantation ; Graft Rejection ; Humans ; Skin Transplantation ; immunology ; methods ; Swine ; Transplantation, Heterologous ; Transplantation, Homologous
8.Regulatory T Cells - An Emerging Role in Transplantation.
Yonsei Medical Journal 2004;45(6):968-977
No abstract available.
Animals
;
Humans
;
*Organ Transplantation
;
Research Support, Non-U.S. Gov't
;
T-Lymphocytes/*immunology
;
*Transplantation Immunology
9.Pig islets for islet xenotransplantation: current status and future perspectives.
Qinghua HU ; Zhongwei LIU ; Haitao ZHU
Chinese Medical Journal 2014;127(2):370-377
OBJECTIVETo review the current status and progress on pig islet xenotransplantation.
DATA SOURCESData used in this review were mainly from English literature of Pubmed database. The search terms were "pig islet" and "xenotransplantation".
STUDY SELECTIONThe original articles and critical reviews selected were relevant to this review's theme.
RESULTSPigs are suggested to be an ideal candidate for obtaining available islet cells for transplantation. However, the potential clinical application of pig islet is still facing challenges including inadequate yield of high-quality functional islets and xenorejection of the transplants. The former can be overcome mainly by selection of a suitable pathogen-free source herd and the development of isolation and purification technology. While the feasibility of successful preclinical pig islet xenotranplantation provides insights in the possible mechanisms of xenogeneic immune recognition and rejection to overwhelm the latter. In addition, the achievement of long-term insulin independence in diabetic models by means of distinct islet products and novel immunotherapeutic strategies is promising.
CONCLUSIONSPig islet xenotransplantation is one of the prospective treatments to bridge the gap between the needs of transplantation in patients with diabetes and available islet cells. Nonetheless, further studies and efforts are needed to translate obtained findings into tangible applications.
Animals ; Graft Rejection ; immunology ; prevention & control ; Islets of Langerhans Transplantation ; immunology ; methods ; Swine ; Transplantation, Heterologous ; methods