1.Pharmacokinetics study of Dayuanyin in normal and febrile rats.
Yu-Jie HOU ; Kang-Ning XIAO ; Jian-Yun BI ; Xin-Jun ZHANG ; Xin-Rui LI ; Yu-Qing WANG ; Ming SU ; Xin-Ru SUN ; Hui ZHANG ; Bo-Yang WANG ; Li-Jie WANG ; Shan-Xin LIU
China Journal of Chinese Materia Medica 2025;50(2):527-533
Based on the pharmacokinetics theory, this study investigated the pharmacokinetic characteristics of albiflorin, paeoniflorin, wogonoside, and wogonin in normal and febrile rats and summarized absorption and elimination rules of Dayuanyin in them to provide reference for further development and clinical application of Dayuanyin. Blood samples were taken from the fundus venous plexus of normal and model rats after intragastric administration of Dayuanyin at different time points. The concentration of each substance in blood was determined by ultra performance liquid chromatography-triple quadrupole mass spectrometry(UPLC-MS/MS) technique at different time points. DAS 2.0, a piece of pharmacokinetics software, was used to calculate the pharmacokinetic parameters of each component. The results show that the 4 components had good linear relationship in their respective ranges, and the results of methodological investigation met the requirements. The pharmacokinetic parameters of C_(max), T_(max), t_(1/2), AUC_(0-t), AUC_(0-∞), and MRT_(0-t) were calculated by the DAS 2.0 non-compartmental model. Compared with those in the normal group, C_(max) and AUC_(0-t) of the 4 components in the model group were significantly increased. There were significant differences in the pharmacokinetic characteristics between the normal and model groups, suggesting that the absorption and elimination of Dayuanyin may be affected by the changes of internal environment of the body in different physiological states.
Animals
;
Rats
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Rats, Sprague-Dawley
;
Fever/metabolism*
;
Tandem Mass Spectrometry
;
Chromatography, High Pressure Liquid
;
Glucosides/pharmacokinetics*
;
Monoterpenes
2.A method for quality control of Angelicae Dahuricae Radix derived from different plants based on UPLC characteristic fingerprints, chemometrics, and QAMS.
Tian-Hua DUAN ; Rong-Rong XU ; Rui LI ; Chu-Han ZHANG ; Xin-Guo WANG ; Wei FENG
China Journal of Chinese Materia Medica 2025;50(4):1051-1062
The ultra-high performance liquid chromatography( UPLC) characteristic fingerprints of Angelica dahurica and A. dahurica var. formosana were established. The compounds corresponding to common peaks were identified by ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry( UPLC-Q-TOF-MS/MS). The results were combined with chemometrics and quantitative analysis of multi-components with a single-marker method(QAMS) to study the quality control of A. dahurica and A. dahurica var. formosana. The separation was performed on a Titank C_(18) column(2. 1 mm × 150 mm, 1. 8 μm)with a mobile phase of acetonitrile-0. 2% formic acid at a flow rate of 0. 3 m L·min~(-1). The column temperature was 35 ℃ and the injection volume was 1. 2 μL. Seven batches of A. dahurica and 11 batches of A. dahurica var. formosana were injected and analyzed. The UPLC characteristic fingerprints of A. dahurica and A. dahurica var. formosana were established according to the Similarity Evaluation System for Chromatographic Fingerprint of Traditional Chinese Medicine( version 2012), and 19 and 20 characteristic peaks were matched respectively. The common peaks were identified by reference substance comparison and UPLC-Q-TOF-MS/MS. Cluster analysis(CA), principal component analysis(PCA), and orthogonal partial least squares-discriminant analysis(OPLS-DA)were performed to analyze the chemical pattern recognition of A. dahurica and A. dahurica var. formosana. The results of CA and PCA could distinguish Angelicae Dahuricae Radix from different producing areas, and the differential quality markers of A. dahurica and A. dahurica var. formosana were obtained by OPLS-DA. With imperatorin as the internal reference, the relative correction factors of oxypeucedanin hydrate, byakangelicin, bergapten, isopimpinellin, oxypeucedanin, and isoimperatorin were 1. 310, 1. 069, 0. 729, 0. 633, 0. 753, and 1. 010, respectively. There was no significant difference between the QAMS and external standard method(ESM)results of each component, indicating that the QAMS established with imperatorin as the internal reference was accurate and reliable. The characteristic fingerprints, chemometrics, and QAMS established in this study can quickly and efficiently control the quality of A. dahurica and A. dahurica var. formosana.
Quality Control
;
Chromatography, High Pressure Liquid/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Angelica/chemistry*
;
Chemometrics/methods*
;
Tandem Mass Spectrometry/methods*
;
Principal Component Analysis
3.Identification of blood-entering components of Anshen Dropping Pills based on UPLC-Q-TOF-MS/MS combined with network pharmacology and evaluation of their anti-insomnia effects and mechanisms.
Xia-Xia REN ; Jin-Na YANG ; Xue-Jun LUO ; Hui-Ping LI ; Miao QIAO ; Wen-Jia WANG ; Yi HE ; Shui-Ping ZHOU ; Yun-Hui HU ; Rui-Ming LI
China Journal of Chinese Materia Medica 2025;50(7):1928-1937
This study identified blood-entering components of Anshen Dropping Pills and explored their anti-insomnia effects and mechanisms. The main blood-entering components of Anshen Dropping Pills were detected and identified by UPLC-Q-TOF-MS/MS. The rationality of the formula was assessed by using enrichment analysis based on the relationship between drugs and symptoms, and core targets of its active components were selected as the the potential anti-insomnia targets of Anshen Dropping Pills through network pharmacology analysis. Furthermore, protein-protein interaction(PPI) network, Gene Ontology(GO) enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway analysis were performed on the core targets. An active component-core target network for Anshen Dropping Pills was constructed. Finally, the effects of low-, medium-, and high-dose groups of Anshen Dropping Pills on sleep episodes, sleep duration, and sleep latency in mice were measured by supraliminal and subliminal pentobarbital sodium experiments. Moreover, total scores of the Pittsburgh sleep quality index(PSQI) scale was used to evaluate the changes before and after the treatment with Anshen Dropping Pills in a clinical study. The enrichment analysis based on the relationship between drugs and symptoms verified the rationality of the Anshen Dropping Pills formula, and nine blood-entering components of Anshen Dropping Pills were identified by UPLC-Q-TOF-MS/MS. The network proximity revealed a significant correlation between eight components and insomnia, including magnoflorine, liquiritin, spinosin, quercitrin, jujuboside A, ginsenoside Rb_3, glycyrrhizic acid, and glycyrrhetinic acid. Network pharmacology analysis indicated that the major anti-insomnia pathways of Anshen Dropping Pills involved substance and energy metabolism, neuroprotection, immune system regulation, and endocrine regulation. Seven core genes related to insomnia were identified: APOE, ALB, BDNF, PPARG, INS, TP53, and TNF. In summary, Anshen Dropping Pills could increase sleep episodes, prolong sleep duration, and reduce sleep latency in mice. Clinical study results demonstrated that Anshen Dropping Pills could decrease total scores of PSQI scale. This study reveals the pharmacodynamic basis and potential multi-component, multi-target, and multi-pathway effects of Anshen Dropping Pills, suggesting that its anti-insomnia mechanisms may be associated with the regulation of insomnia-related signaling pathways. These findings offer a theoretical foundation for the clinical application of Anshen Dropping Pills.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Tandem Mass Spectrometry/methods*
;
Sleep Initiation and Maintenance Disorders/metabolism*
;
Mice
;
Network Pharmacology
;
Male
;
Chromatography, High Pressure Liquid
;
Humans
;
Protein Interaction Maps/drug effects*
;
Sleep/drug effects*
;
Female
;
Adult
4.Pharmacokinetics of 7 characteristic components from active fraction of Alpiniae Officinarum Rhizoma in rats with Helicobacter pylori gastritis based on HPLC-MS/MS.
Hao-Ran MA ; Jian-Ting ZHAN ; Xin LUO ; Wu-Yin-Xiao ZHENG ; Xiao-Chuan YE ; Dan LIU
China Journal of Chinese Materia Medica 2025;50(7):1949-1958
A high performance liquid chromatography-tandem mass spectrometry(HPLC-MS/MS) method was established for simultaneous determination of seven characteristic components from the active fraction of Alpiniae Officinarum Rhizoma in rat plasma, including galangin, kaempferol, kaempferide, pinocembrin, 1,7-diphenyl-4-en-3-heptanone, 5-hydroxy-7-(4-hydroxy-3-methoxyphenyl)-1-phenyl-3-heptanone(DHPA), and 7-(4-hydroxy-3-methoxyphenyl)-1-phenyl-4-en-3-heptanone(DPHB). The new developed HPLC-MS/MS method was applied to study the pharmacokinetics of the 7 characteristic components in rats with Helicobacter pylori gastritis. A Waters Sunfire C_(18) column(2.1 mm×150 mm, 3.5 μm) was used. The acetonitrile-aqueous solution(containing 0.1% formic acid) was adopted as the mobile phase for gradient elution. Seven components and internal standard(chlorogenic acid) were separated within 12 min. Mass spectrometric detection was performed in multiple reaction monitoring(MRM) mode using electrospray ionization(ESI) source with fast switching between positive and negative ions. The method was verified by specificity, linearity, precision, accuracy, recovery, matrix effect, and stability and met the requirements of pharmacokinetic study on the 7 components in rat plasma. Pharmacokinetic results showed that the average peak time(T_(max)) of the 7 components was 0.31-2.19 h, their elimination half-life(t_(1/2)) was 5.26-16.65 h, and the average residence time(MRT) was 6.29-31.03 h after the oral administration of the active fraction of Alpiniae Officinarum Rhizoma to rats with H. pylori gastritis. The plasma exposure levels of galangin and DHPA were higher than those of the other components. The concentration-time curves of four detected flavonoids showed obvious double peaks. This study elucidated the pharmacokinetic characteristics of 7 characteristic components from the active fraction of Alpiniae Officinarum Rhizoma in rats with H. pylori gastritis, providing a scientific basis for the identification of the pharmacodynamic substances of Alpiniae Officinarum Rhizoma for treatment of H. pylori gastritis and the clinical application of Alpiniae Officinarum Rhizoma in the prevention and treatment of H. pylori gastritis.
Animals
;
Rats
;
Chromatography, High Pressure Liquid/methods*
;
Tandem Mass Spectrometry/methods*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Helicobacter pylori/drug effects*
;
Alpinia/chemistry*
;
Rats, Sprague-Dawley
;
Gastritis/metabolism*
;
Helicobacter Infections/metabolism*
;
Flavonoids/blood*
;
Rhizome/chemistry*
;
Liquid Chromatography-Mass Spectrometry
5.Digital identification of Cervi Cornu Pantotrichum based on HPLC-QTOF-MS~E and Adaboost.
Xiao-Han GUO ; Xian-Rui WANG ; Yu ZHANG ; Ming-Hua LI ; Wen-Guang JING ; Xian-Long CHENG ; Feng WEI
China Journal of Chinese Materia Medica 2025;50(5):1172-1178
Cervi Cornu Pantotrichum is a precious animal-derived Chinese medicinal material, while there are often adulterants derived from animals not specified in the Chinese Pharmacopeia in the market, which disturbs the safety of medication. This study was conducted with the aim of strengthening the quality control of Cervi Cornu Pantotrichum and standardizing the medication. To achieve digital identification of Cervi Cornu Pantotrichum from different sources, a digital identification model was constructed based on ultra-high performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry(UHPLC-QTOF-MS~E) combined with an adaptive boosting algorithm(Adaboost). The young furred antlers of sika deer, red deer, elk, and reindeer were processed and then subjected to polypeptide analysis by UHPLC-QTOF-MS~E. Then, the mass spectral data reflecting the polypeptide information were obtained by digital quantification. Next, the key data were obtained by feature screening based on Gini index, and the digital identification model was constructed by Adaboost. The model was evaluated based on the recall rate, F_1 composite score, and accuracy. Finally, the results of identification based on the constructed digital identification model were validated. The results showed that when the Gini index was used to screen the data of top 100 characteristic polypeptides, the digital identification model based on Adaboost had the best performance, with the recall rate, F_1 composite score, and accuracy not less than 0.953. The validation analysis showed that the accuracy of the identification of the 10 batches of samples was as high as 100.0%. Therefore, based on UHPLC-QTOF-MS~E and Adaboost algorithm, the digital identification of Cervi Cornu Pantotrichum can be realized efficiently and accurately, which can provide reference for the quality control and original animal identification of Cervi Cornu Pantotrichum.
Animals
;
Algorithms
;
Antlers/chemistry*
;
Boosting Machine Learning Algorithms
;
Chromatography, High Pressure Liquid/methods*
;
Deer
;
Drugs, Chinese Herbal/chemistry*
;
Mass Spectrometry/methods*
;
Quality Control
;
Reindeer
;
Tandem Mass Spectrometry/methods*
;
Tissue Extracts/analysis*
6.Pharmacokinetics of Jinlingzi San and its single medicines in rats by LC-MS/MS.
Nan HU ; Yan-Bin MENG ; Si-Yu SHAN ; Shuang-Shuang ZHENG ; Ying-Han WANG ; Lan WANG ; Yu-Ling LIU
China Journal of Chinese Materia Medica 2025;50(5):1385-1391
This study aims to investigate the scientificity and efficacy of the compatibility of Jinlingzi San from pharmacokinetics. Liquid chromatography-tandem mass spectrometry(LC-MS/MS) was utilized to determine the plasma concentrations of the active components: toosendanin, tetrahydropalmatine A, and tetrahydropalmatine B at various time points following the gavage of Jinlingzi San and its single medicines in rats. Subsequently, WinNonlin was employed to calculate pertinent pharmacokinetic parameters. The pharmacokinetic parameters in rat plasma were compared between the single medicines and the compound formula of Jinlingzi San. It was discovered that the area under the curve(AUC_(all)) and peak concentrations(C_(max)) of tetrahydropalmatine A, and tetrahydropalmatine B were significantly elevated in the compound formula group compared with the single medicine groups. Conversely, the AUC_(all )and C_(max) of toosendanin notably decreased. Furthermore, the compound formula group had longer mean residence time(MRT) and lower apparent clearance(CL/F) of all three active ingredients than the single medicine groups(P<0.05). These findings indicated that Jinlingzi San enhanced the absorption of tetrahydropalmatine A and tetrahydropalmatine B in vivo, facilitating their pharmacological actions. Concurrently, it inhibited the absorption of toosendanin, thereby preventing potential toxic reactions. Moreover, the compatibility prolonged the residence time of the active ingredients in the body. This study provides a reference for exploring the compatibility rationality of Jinlingzi San.
Animals
;
Rats
;
Tandem Mass Spectrometry/methods*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Rats, Sprague-Dawley
;
Chromatography, Liquid/methods*
;
Berberine Alkaloids/blood*
;
Liquid Chromatography-Mass Spectrometry
7.Exploring in vivo existence forms of Notoginseng Radix et Rhizoma in rats.
Meng-Ge FENG ; Lin-Han XIANG ; Jing ZHANG ; Wen-Hui ZHAO ; Yang LI ; Li-Li LI ; Guang-Xue LIU ; Shao-Qing CAI ; Feng XU
China Journal of Chinese Materia Medica 2025;50(9):2539-2562
The study aims to elucidate the existence forms(original constituents and metabolites) of Notoginseng Radix et Rhizoma in rats and reveal its metabolic pathways. After Notoginseng Radix et Rhizoma was administered orally once a day for seven consecutive days to rats, all urine and feces samples were collected for seven days, while the blood samples were obtained 6 h after the last administration. Using the ultra high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UHPLC-Q-TOF-MS/MS) technique, this study identified 6, 73, and 156 existence forms of Notoginseng Radix et Rhizoma in the rat plasma, urine, and feces samples, respectively. Among them, 101 compounds were identified as new existence forms, and 13 original constituents were identified by comparing with reference compounds. The metabolic reactions of constituents from Notoginseng Radix et Rhizoma were mainly deglycosylation, dehydration, hydroxylation, hydrogenation, dehydrogenation, acetylation, and amino acid conjugation. Furthermore, the possible in vivo metabolic pathways of protopanaxatriol(PPT) in rats were proposed. Through comprehensive analysis of the liquid chromatography-mass spectrometry(LC-MS) data, isomeric compounds were discriminated, and the planar chemical structures of 32 metabolites were clearly identified. According to the literature, 48 original constituents possess antitumor and cardiovascular protective bioactivities. Additionally, 32 metabolites were predicted to have similar bioactivities by SuperPred. This research lays the foundation for further exploring the in vivo effective forms of Notoginseng Radix et Rhizoma.
Animals
;
Rats
;
Drugs, Chinese Herbal/pharmacokinetics*
;
Rhizome/metabolism*
;
Male
;
Rats, Sprague-Dawley
;
Chromatography, High Pressure Liquid
;
Panax notoginseng/chemistry*
;
Tandem Mass Spectrometry
;
Feces/chemistry*
8.Simultaneous determination of 498 farm chemical residues in Atractylodis Macrocephalae Rhizoma by HPLC-MS/MS.
Bai-Xue CHEN ; Yu-Qiang WU ; Gui-Chang BAI ; Yi LUO
China Journal of Chinese Materia Medica 2025;50(8):2090-2107
A high performance liquid chromatography-tandem mass spectrometry(HPLC-MS/MS) method was established for the simultaneous determination of 498 farm chemical residues in Atractylodis Macrocephalae Rhizoma. Furthermore, the established method was used to determine the residues in 30 batches of Atractylodis Macrocephalae Rhizoma samples from different habitats. The samples were extracted with acetonitrile containing 1% glacial acetic acid, and the extract was purified by dispersive solid-phase extraction with sorbents of magnesium sulfate, primary secondary amine(PSA), C_(18), silica gel, and graphitized carbon black(GCB). The prepared samples were then analyzed by HPLC-MS/MS, and the internal standard method was used to quantify the residues. The experimental results showed that the 498 farm chemicals presented good linear relationship within the range of 5-400 ng·mL~(-1), with correction coefficients greater than 0.990. Within the linear ranges, the recovery of 495 farm chemicals(except daimuron, chinomethionat, and emamectin benzoate) at three spiked levels(0.05, 0.10, and 0.20 mg·kg~(-1)) was in the range of 61.18%-132.1%, with the RSD of 0.24%-15%. A total of 16 farm chemicals were detected in 30 batches of samples. Among them, difenoconazole and tebuconazole showed higher detection rates, and the detection rate of difenoconazole was 76.7%. The residues of 4 batches of samples exceeded the limits of quantitation of 33 banned farm chemicals stipulated in the Chinese Pharmacopoeia. The theoretical maximum residue limits of the farm chemicals except banned farm cheimicals were used as the judgment standard of safety risks, under which the detected residues of clothianidin, difenoconazole, and pirimiphos-methyl exceeded the theoretical maximum residue limits. The new method established in this paper is simple and reliable, and it can thus be used for qualitative and quantitative analyses of farm chemical residues in Atractylodis Macrocephalae Rhizoma.
Tandem Mass Spectrometry/methods*
;
Chromatography, High Pressure Liquid/methods*
;
Atractylodes/chemistry*
;
Rhizome/chemistry*
;
Drugs, Chinese Herbal/analysis*
;
Pesticide Residues/analysis*
;
Liquid Chromatography-Mass Spectrometry
9.Qualitative and quantitative analysis of chemical components of different processed products of Corni Fructus by UPLC-Q-TOF-MS and UPLC-QqQ-MS/MS.
Li-Qiang ZHANG ; Guo-Shun SHAN ; Yi-Dan HONG ; Si-Han LIU ; Guo-Wei XU ; Hui GAO ; Wei WANG ; Cheng-Guo JU
China Journal of Chinese Materia Medica 2025;50(8):2145-2158
Qualitative and quantitative analysis methods for chemical components of different processed products of Corni Fructus were established to systematically characterize and identify these components, and the content of the main differential components was determined. The chemical components of different processed products of Corni Fructus were collected using ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS). Through analysis of self-built databases, literature, and reference standards, a total of 93 components were obtained, including 19 iridoids, 15 flavonoids, 16 organic acids, eight triterpenoids, eight tannins, four amino acids, two polysaccharides, five olefins, and 16 other compounds. Additionally, by using multivariate statistical methods, the differential components between different processed products of Corni Fructus were screened under the conditions of VIP>1.0 and FC<0.5 or FC>2.0 and P<0.05. The PCA and OPLS-DA results showed differences in the chemical components between different processed products of Corni Fructus. A total of 21 differential components were screened, including tartaric acid, morroniside, and rutin. On this basis, ultra-high performance liquid chromatography-triple quadrupole tandem mass spectrometry(UPLC-QqQ-MS/MS) was used to determine the content of 10 main common differential components, including gallic acid, morroniside, ursolic acid, loganin, swertiamarin, rutin, 5-hydroxymethylfurfural, cornuside Ⅰ, quercetin, and oleanolic acid. The above 10 components showed a good linear relationship within the determined concentration range, with the precision, stability, repeatability, and sample recovery rate all meeting the requirements. Compared with that in Corni Fructus, the content of iridoid glycosides in wine-prepared Corni Fructus and wine-and honey-prepared Corni Fructus decreased, while the content of gallic acid, rutin, quercetin, 5-hydroxymethylfurfural, ursolic acid, and oleanolic acid increased. Compared with wine-prepared Corni Fructus, wine-and honey-prepared Corni Fructus showed varying degrees of increase in all other components, except for a slight decrease in gallic acid content. In summary, this study clarified the influence of different processing methods on the chemical components of Corni Fructus, providing a theoretical basis for the scientific connotation, overall quality evaluation, and clinically rational application of Corni Fructus processing in the future.
Tandem Mass Spectrometry/methods*
;
Chromatography, High Pressure Liquid/methods*
;
Cornus/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
Fruit/chemistry*
10.Analysis of impact of host plants on quality of Taxilli Herba based on widely targeted metabolomics.
Dong-Lan ZHOU ; Zi-Shu CHAI ; Mei RU ; Fei-Ying HUANG ; Xie-Jun ZHANG ; Min GUO ; Yong-Hua LI
China Journal of Chinese Materia Medica 2025;50(12):3281-3290
This study aims to explore the impact of host plants on the quality of Taxilli Herba and provide a theoretical basis for the quality control of Taxilli Herba. The components of Taxilli Herba from three different host plants(Morus alba, Salix babylonica, and Cinnamomum cassia) and its 3 hosts(mulberry branch, willow branch, and cinnamon branch) were detected by widely targeted metabolomics based on ultra-high performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS). Principal component analysis(PCA), orthogonal partial least squares discriminant analysis(OPLS-DA), and Venn diagram were employed for analysis. A total of 717 metabolites were detected in Taxilli Herba from the three host plants and the branches of these host plants by UPLC-MS/MS. The results of PCA and OPLS-DA of Taxilli Herba from the three different host plants showed an obvious separation trend due to the different effects of host plants. The Venn diagram showed that there were 32, 8, and 26 characteristic metabolites in samples of Taxilli Herba from M. alba host, S. babylonica host, and C. cassia host, respectively. It was found by comparing the characteristic metabolites of Taxilli Herba and its hosts that each host transmits its characteristic components to Taxilli Herba, so that the Taxilli Herba contains the characteristic components of the host. The Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway analysis showed that the differential metabolites of Taxilli Herba from the three hosts were mainly enriched in flavonoid biosynthesis, arginine and proline metabolism, and glycolysis/gluconeogenesis pathways. Furthermore, the differential metabolites enriching pathways of Taxilli Herba from the three hosts were different depending on the host. In a word, host plants have a significant impact on the metabolites of Taxilli Herba, and it may be an important factor for the quality of Taxilli Herba.
Metabolomics/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Chromatography, High Pressure Liquid
;
Tandem Mass Spectrometry
;
Quality Control
;
Salix/chemistry*
;
Cinnamomum aromaticum/metabolism*
;
Principal Component Analysis

Result Analysis
Print
Save
E-mail