1.Research on network pharmacology of alkaloids in Sophora alopecuroides.
Bo-Yang SHANG ; Ping YANG ; Li CHEN ; Xiao-Juan GAO ; Jing-Jiao YONG ; Xia ZHANG ; Jian-Jun ZHAO ; Han-Qing WANG
China Journal of Chinese Materia Medica 2018;43(1):160-167
It was aimed at exploring the potential pharmacological effects of alkaloids in Sophora alopecuroides by means of network pharmacology in this study. The main alkaloids in S. alopecuroides were collected for analysis of drug properties, prediction of potential targets and screening of signaling pathways. DAVID analysis tool combined with KEGG database was used to annotate and analyze the signaling pathway. The alkaloids-targets-signaling pathways network was built through Cytoscape software. Results showed that 17 alkaloids in S. alopecuroides involved 49 targets (170 times in all) and 22 important signaling pathways. Three nodes in model of network pharmacology were cross-linked, and the metabolic pathways were coordinated and regulated by each other. It indicated that alkaloids in S. alopecuroides may have therapeutic effect on diseases of cancer, metabolic disorder, endocrine system, digestive system, nervous system and so on.
Alkaloids
;
pharmacology
;
Phytochemicals
;
pharmacology
;
Signal Transduction
;
drug effects
;
Sophora
;
chemistry
2.The Effects of IFN-γ on AKT activated 32D Cells and its Mechanisms.
Lai-Gen TONG ; Hong LIU ; Zeng-Hua LIN ; Jun-Hong LI ; Sheng-Hua JIANG ; Xiu-Fang CHEN ; Hong-Ming HUANG ; Wei LU ; Lu ZHOU
Chinese Journal of Hematology 2010;31(12):826-829
OBJECTIVETo investigate the effects of activated AKT on murine myeloid precursor cells (32D cells), and the effects of IFN-γ on 32D cells and its mechanisms.
METHODSPlasmid transduction was used to enhance the expression of AKT on 32D cells. After the transfected cells treated with IFN-γ for 24 hours, proliferation rate was tested by WST-1, apoptosis by flow cytometry, expression of phosphorylated Erk1/2, Stat3 and phosphorylated Stat3 was determined by Western blot.
RESULTS(1) IFN-γ at low concentration (100 U/ml) enhanced the growth and proliferation of 32D cells, while at high concentration (1000 U/ml) suppressed them. (2) Compared with control groups, low concentration IFN-γ increased (1124 ± 13) Stat3 phosphorylation in 32D-cell, while it high concentration IFN-γ decreased (601 ± 13). 32D cells transfected with activated Akt grew rapidly (0.287 ± 0.010) and had a low apoptotic rate [(9.57 ± 0.17)% (P < 0.05)]. (3) The expression of p-Erk1/2 in transfected 32D-cell was significantly reduced (P < 0.05). (4) Apoptosis rate of IFN-γ treated group was significantly decreased in transfected 32D cells (P < 0.05).
CONCLUSIONSIFN-γ has dual effects on 32D cells, namely, at low concentration enhanced the growth and proliferation of 32D cells, while at high concentration suppressed them. Its mechanisims is possibly through Stat3 pathway. Activated Akt can significantly promote the growth and proliferation of 32D cell and significantly inhibit apoptosis and IFN-γ can regulate cell proliferation and apoptosis through AKT. AKT activation can inhibit the Erk signal pathway, which may be affected by inhibition the modificaton of Raf1.
Animals ; Apoptosis ; drug effects ; Cell Proliferation ; drug effects ; Phosphorylation ; drug effects ; STAT3 Transcription Factor ; metabolism ; Signal Transduction ; drug effects
3.The multi-target drugs and their design.
Acta Pharmaceutica Sinica 2009;44(3):282-287
The reduce of bioactivity and augment of the side effect of single-target drugs is generated by the multi-factorial properties of the pathogenesis of disease, which could be solved by the multi-target drugs. The problems and its solution of the design of the multi-target drugs were discussed in this paper, at the same time, the design of the multi-target drugs by pharmacophore model method is presented.
Computer-Aided Design
;
Drug Combinations
;
Drug Delivery Systems
;
methods
;
Drug Design
;
Humans
;
Signal Transduction
;
drug effects
4.Core signaling pathways and new therapeutic targets in pancreatic cancer.
Lei YOU ; Ge CHEN ; Yu-pei ZHAO
Chinese Medical Journal 2010;123(9):1210-1215
OBJECTIVEPancreatic cancer is a highly aggressive malignancy that has been resistant to treatment. Advances in cancer genetics have improved our understanding of this disease, but the genetics of pancreatic cancer remain poorly understood. A better understanding of the pathogenic role of specific gene mutations and core signaling pathways would propel the development of more effective treatments. The objective in this review was to highlight recent research that shows promise for new treatments for pancreatic cancer.
DATA SOURCESAll articles cited in this review were mainly searched from PubMed, which were published in English from 1993 to 2009.
STUDY SELECTIONOriginal articles and critical reviews selected were relevant to the molecular mechanisms of pancreatic cancer.
RESULTSDysregulation of core signaling pathways and processes through frequently genetic alterations can explain the major features of pancreatic tumorigenesis. New therapeutic targets based on recent research are emerging that hold promise for the future management of pancreatic cancer.
CONCLUSIONNew agents used in conjunction with standard radiotherapy and chemotherapy might help to overcome drug resistance by targeting multiple signaling pathways to induce responsiveness of pancreatic cancer cells to death signals.
Humans ; Pancreatic Neoplasms ; drug therapy ; metabolism ; radiotherapy ; Signal Transduction ; drug effects ; radiation effects
5.Polysaccharides activate signaling pathways of macrophage.
Journal of Zhejiang University. Medical sciences 2011;40(5):567-572
Polysaccharides extracted from various sources are natural active substances, which may lead to the activation of macrophage via multiple pathways and mechanisms. This article intends to illustrate the signaling pathways of polysaccharides from plants, fungi, algae and other sources, to identify the mechanisms on the molecular level, and to explore the novel target immunomodulatory agents.
Animals
;
Humans
;
Macrophage Activation
;
drug effects
;
immunology
;
Macrophages
;
drug effects
;
immunology
;
metabolism
;
Polysaccharides
;
pharmacology
;
Signal Transduction
6.Effects of antihyperglycemics on endothelial progenitor cells.
Xue HAN ; Guojun JIANG ; Qiaojuan SHI
Journal of Zhejiang University. Medical sciences 2020;49(5):629-636
Endothelial progenitor cells (EPCs) play an important role in diabetic vascular complications. A large number of studies have revealed that some clinical antihyperglycemics can improve the complications of diabetes by regulating the function of EPCs. Metformin can improve EPCs function in diabetic patients by regulating oxidative stress level or downstream signaling pathway of adenosine monophosphate activated protein kinase; Pioglitazone can delay the aging of EPCs by regulating telomerase activity; acarbose, sitagliptin and insulin can promote the proliferation, migration and adhesion of EPCs. In addition to lowering blood glucose, the effects of antihyperglycemics on EPCs may also be one of the mechanisms to improve the complications of diabetes. This article reviews the research progress on the regulation of EPC proliferation and function by antihyperglycemics.
Cell Movement/drug effects*
;
Cells, Cultured
;
Endothelial Progenitor Cells/drug effects*
;
Humans
;
Hypoglycemic Agents/pharmacology*
;
Signal Transduction/drug effects*
7.Drug resistance of leukemic stem cells mediated by hedgehog signaling pathway.
Ping-Fang XIA ; Qi PENG ; Miao-Rong SHE
Journal of Experimental Hematology 2013;21(1):250-253
Drug resistance and relapse are the major challenge for current treatment of acute leukemia. It is critical for ultimately curing leukemia to overcome chemoresistance of leukemic stem cells (LSC) and to eradicate LSC. Recent studies have found that abnormal activated Hedgehog (HH) signaling pathway plays an important role in a wide variety of tumors and regulates multi-drug resistance of LSC. This review briefly summarizes the molecular mechanism of HH signal pathway inducing drug resistance of LSC and leading to novel strategies for eradicating LSC.
Drug Resistance, Neoplasm
;
Hedgehog Proteins
;
metabolism
;
Humans
;
Leukemia
;
metabolism
;
Neoplastic Stem Cells
;
drug effects
;
Signal Transduction
8.Research progress of the anti-proliferation effect of emodin on VSMCs.
Cong LU ; Yucheng CHEN ; Zhi ZENG
China Journal of Chinese Materia Medica 2012;37(4):417-420
Emodin has such pharmacological effects as ant-inflammatory, anti-tumor, immunoregulation. Meanwhile, emodin could be used for inhibiting the proliferation of vascular smooth muscle cells (VSMC). Many foreign studies demonstrated that emodin had an effect on inhibiting proliferation of VSMCs and cell migration and promoting cell apoptosis, and probed into molecular mechanisms in all aspects. Besides, clinical translational researches and application explorations were also carried out. This article summarizes the research progress of the anti-proliferation effect of emodin on VSMCs.
Apoptosis
;
drug effects
;
Cell Movement
;
drug effects
;
Cell Proliferation
;
drug effects
;
Emodin
;
pharmacology
;
Humans
;
Muscle, Smooth, Vascular
;
cytology
;
drug effects
;
metabolism
;
Signal Transduction
;
drug effects
9.New achievements in ginseng research and its future prospects.
Chinese journal of integrative medicine 2009;15(6):403-408
In recent decades, scientists in Asian and Western countries have been paying great attention to ginseng research. Today, more than 200 ginsenosides and non-saponin constituents have been isolated and identified. Ginsenosides show biological activities only after being deglycosylated by intestinal bacteria. Aglycone protopanaxadiol and protopanaxatriol show the highest bioactivities. According to literature, the noticeable action of ginseng is that of delaying aging and especially increasing the nootropic effect, and it was found for the first time that Rg1 could increase hippocampal neurogenesis in vitro and in vivo under physiological and pathological circumstances. This is one of primary mechanisms underlying many of its pharmacological actions on the central nervous system. Rg1 was further shown to improve learning and memory in normal rats and mice. The nootropic signaling pathway has also been carried out in normal rats, and the Rg1-induced signaling pathway is similar to the memory formation that occurs in mammals, suggesting that Rg1 may have a potential effect in increasing intellectual capacity in normal people. Comparisons of chemical structures and pharmacologic functions between Panax ginseng and Panax quiquefolium were carried out by many scientists. The conclusion is that each has its own characteristics. There is no superiority or inferiority to the other.
Animals
;
Cognition
;
drug effects
;
Ginsenosides
;
pharmacology
;
Humans
;
Learning
;
drug effects
;
Memory
;
drug effects
;
Mice
;
Neovascularization, Physiologic
;
Neurogenesis
;
Neuronal Plasticity
;
drug effects
;
Panax
;
chemistry
;
Rats
;
Signal Transduction
;
drug effects
10.H2O2 induces changes in the plasma membrane of Saccharomyces cerevisiae.
Tingli SUN ; Qingshan SHI ; Yousheng OUYANG ; Yiben CHEN
Chinese Journal of Biotechnology 2009;25(12):1887-1891
This article reviews the recent studies on H2O2 adaptation of Saccharomyces cerevisiae. When the cell exposed in the H2O2 sub-lethal doses, the plasma membrane permeability decreased, meanwhile the plasma membrane fluidity is minished. These changes resulted in a gradient across the plasma membrane, which conferring a higher resistance to oxidative stress. Recent work has also shown that the yeast cells adapted to H2O2 would lead to several changes in the expression of genes coding the key enzymes involved in the biosynthesis of lipid profile and in the organization of lipid microdomains of the plasma membrane, which finally decreased its' permeability and fluidity. The reorganization of the plasma membrane might be the major mechanism of the H2O2 adaptation. Once the yeast cells adapted to the external H2O2, changes in plasma occurred. The H2O2 dependent signaling pathways in the plasma membrane might be activated by high levels of H2O2. But the details of the signaling events should still be further studies.
Cell Membrane
;
drug effects
;
metabolism
;
Cell Membrane Permeability
;
drug effects
;
Hydrogen Peroxide
;
pharmacology
;
Membrane Fluidity
;
drug effects
;
Saccharomyces cerevisiae
;
cytology
;
drug effects
;
Signal Transduction
;
drug effects