1.Effect of MiR-200b on retinal endothelial cell function in high-glucose condition and the mechanism.
Qun JIANG ; Xiao-Hua ZHU ; Xin-Min LIU ; Jian-Ming LIU
Journal of Southern Medical University 2016;36(4):577-581
OBJECTIVETo investigate the effect of MiR-200b on human retinal endothelial cells (hRECs) cultured in high glucose and explore the mechanism.
METHODShRECs cultured in high glucose or in normal media were examined for MiR-200b mRNA expression using real-time PCR. The effect of MiR-200b transfection on hREC proliferation in high-glucose culture was evaluated with MTT assay, and real-time PCR and Western blotting were performed to determine vascular endothelial growth factor (VEGF) and transforming growth factor β1 (TGFβ1) expression in the transfected cells.
RESULTSThe cells in high-glucose culture showed significantly decreased MiR-200b expression and active proliferation. Compared with those in normal control cells, VEGF and TGFβ1 mRNA and protein expressions increased markedly in cells cultured in high glucose (P<0.05). MiR-200b transfection of the cells caused significantly increased cellular expression of MiR-200b but decreased expression levels of VEGF and TGFβ1 mRNA and protein, and suppressed hREC proliferation in high glucose culture (P<0.05).
CONCLUSIONMiR-200b can regulate REC growth and proliferation by changing VEGF and TGFβ1 expressions and thus play a role in the pathogenesis and progression of diabetic retinopathy.
Blotting, Western ; Cell Proliferation ; Cells, Cultured ; Culture Media ; chemistry ; Diabetic Retinopathy ; Endothelial Cells ; cytology ; Glucose ; chemistry ; Humans ; MicroRNAs ; metabolism ; RNA, Messenger ; Real-Time Polymerase Chain Reaction ; Retina ; cytology ; Transfection ; Transforming Growth Factor beta1 ; metabolism ; Vascular Endothelial Growth Factor A ; metabolism
2.Vascular endothelial growth factor up-regulates the expression of intracellular adhesion molecule-1 in retinal endothelial cells via reactive oxygen species, but not nitric oxide.
Xiao-ling ZHANG ; Liang WEN ; Yan-jiong CHEN ; Yi ZHU
Chinese Medical Journal 2009;122(3):338-343
BACKGROUNDThe vascular endothelial growth factor (VEGF) is involved in the initiation of retinal vascular leakage and nonperfusion in diabetes. The intracellular adhesion molecule-1 (ICAM-1) is the key mediator of the effect of VEGFs on retinal leukostasis. Although the VEGF is expressed in an early-stage diabetic retina, whether it directly up-regulates ICAM-1 in retinal endothelial cells (ECs) is unknown. In this study, we provided a new mechanism to explain that VEGF does up-regulate the expression of ICAM-1 in retinal ECs.
METHODSBovine retinal ECs (BRECs) were isolated and cultured. Immunohistochemical staining was performed to identify BRECs. The cultured cells were divided into corresponding groups. Then, VEGF (100 ng/ml) and other inhibitors were used to treat the cells. Cell lysate and the cultured supernatant were collected, and then, the protein level of ICAM-1 and phosphorylation of the endothelial nitric oxide synthase (eNOS) were detected using Western blotting. Griess reaction was used to detect nitric oxide (NO).
RESULTSWestern blotting showed that the VEGF up-regulated the expression of ICAM-1 protein and increased phosphorylation of the eNOS in retinal ECs. Neither the block of NO nor protein kinase C (PKC) altered the expression of ICAM-1 or the phosphorylation of eNOS. The result of the Western blotting also showed that inhibition of phosphatidylinositol 3-kinase (PI3K) or reactive oxygen species (ROS) significantly reduced the expression of ICAM-1. Inhibition of PI3K also reduced phosphorylation of eNOS. Griess reaction showed that VEGF significantly increased during NO production. When eNOS was blocked by L-NAME or PI3K was blocked by LY294002, the basal level of NO production and the increment of NO caused by VEGF could be significantly decreased.
CONCLUSIONROS-NO coupling in the retinal endothelium may be a new mechanism that could help to explain why VEGF induces ICAM-1 expression and the resulting leukostasis in diabetic retinopathy.
Animals ; Blotting, Western ; Cattle ; Cells, Cultured ; Endothelial Cells ; cytology ; drug effects ; metabolism ; Gene Expression ; drug effects ; Intercellular Adhesion Molecule-1 ; metabolism ; Nitric Oxide ; metabolism ; Reactive Oxygen Species ; metabolism ; Retina ; cytology ; Vascular Endothelial Growth Factor A ; pharmacology
3.Effect of vascular endothelial growth factor small interfering RNA (siRNA) on retinal microvascular endothelial cells under hypoxia condition in vitro.
Xiao-zhuang ZHANG ; Jing-bo JIANG ; Xian-qiong LUO ; Shui-qing HUANG ; Jie YANG ; Jian-qiao LI ; Qiu-xiong LIN
Chinese Journal of Pediatrics 2009;47(6):457-461
OBJECTIVETo explore VEGF siRNA's effect on the immature fetal retinal microvascular endothelial cells in vitro.
METHODThe fresh retinal micrangium was primarily cultured to obtain microvascular endothelial cells. CoCl2 was used to simulate oxygen-deficient conditions. siRNA directed against human VEGF was designed and chemically synthesized. There were 3 groups in our experiment: VEGF siRNA group, hypoxia control group, and negative siRNA control group. The fetal retinal micrangium vascular endothelial cells were transfected by using liposome. The expression levels of VEGF mRNA and protein were evaluated by RT-PCR and Western blotting 24, 48, 72 h after transfection, cell proliferation was evaluated by MTT method.
RESULTThe expression levels of VEGF mRNA decreased by 21.05%, 79.67%, and 90.48% 24 h, 48 h, and 72 h after transfection as compared to those in hypoxia control group, the expression level of VEGF protein had decreased by 14.58%, 66.97%, and 81.61% as compared to those in hypoxia control group. The siRNA could decrease cell proliferation under hypoxia too, the multiplication rate after 12, 24, 48, and 72 h decreased by 15.0%, 42.9%, 78.3% and 65.9%.
CONCLUSIONVEGF siRNA could down-regulate the expression of VEGF in immature fetal retinal microvascular endothelial cells and suppressed cell proliferation. Application of siRNA to inhibit expression of VEGF may be a hopeful way to prevent and cure ROP.
Cell Hypoxia ; Cell Line ; Endothelial Cells ; metabolism ; Humans ; Infant, Newborn ; RNA, Messenger ; genetics ; RNA, Small Interfering ; Retina ; metabolism ; pathology ; Retinal Vessels ; cytology ; metabolism ; Retinopathy of Prematurity ; metabolism ; Transfection ; Vascular Endothelial Growth Factor A ; genetics ; metabolism
4.Shank 2 expression coincides with neuronal differentiation in the developing retina.
Jeong Hun KIM ; Jin Hyoung KIM ; Esther YANG ; Jae Hwan PARK ; Young Suk YU ; Kyu Won KIM
Experimental & Molecular Medicine 2009;41(4):236-242
The retinal activity for vision requires a precise synaptic connectivity. Shank proteins at postsynaptic sites of excitatory synapses play roles in signal transmission into the postsynaptic neuron. However, the correlation of Shank 2 expression with neuronal differentiation in the developing retina remains to be elucidated regardless of previous evidences of Shank 2 expression in retina. Herein, we demonstrated that with progression of development, Shank 2 is initially detected in the inner plexiform layer at P2, and then intensively detected in inner plexiform layer, outer plexiform layer, and ganglion cell layer at P14, which was closely colocalized to the neurofilament expression. Shank 2 was, however, not colocalized with glial fibrillary acidic protein. Shank 2 expression was increased in the differentiated retinoblastoma cells, which was mediated by ERK 1/2 activation. Moreover, Shank 2 expression was colocalized with neurofilament at the dendritic region of cells. In conclusion, our data suggests that Shank 2 is expressed in the neurons of the developing retina and could play a critical role in the neuronal differentiation of the developing retina.
Adaptor Proteins, Signal Transducing/genetics/*metabolism
;
Animals
;
Astrocytes/cytology/metabolism
;
Cell Differentiation/*physiology
;
Enzyme Activation
;
Extracellular Signal-Regulated MAP Kinases/metabolism
;
*Gene Expression Regulation, Developmental
;
Mice
;
Mice, Inbred C57BL
;
Nerve Tissue Proteins/genetics/*metabolism
;
Neurofilament Proteins/metabolism
;
Neurons/cytology/*physiology
;
*Retina/cytology/growth & development/physiology
;
Retinoblastoma/metabolism/pathology
5.The homeodomain of Eyeless regulates cell growth and antagonizes the paired domain-dependent retinal differentiation function.
Miho TANAKA-MATAKATSU ; John MILLER ; Wei DU
Protein & Cell 2015;6(1):68-78
Pax6 and its Drosophila homolog Eyeless (Ey) play essential roles during eye development. Ey/Pax6 contains two distinct DNA binding domains, a Paired domain (PD) and a Homeodomain (HD). While Ey/Pax6 PD is required for the expression of key regulators of retinal development, relatively little is known about the HD-dependent Ey function. In this study, we used the UAS/GAL4 system to determine the functions of different Ey domains on cell growth and on retinal development. We showed that Ey can promote cell growth, which requires the HD but not the PD. In contrast, the ability of Ey to activate Ato expression and induce ectopic eye formation requires the PD but not the HD. Interestingly, deletion of the HD enhanced Ey-dependent ectopic eye induction while overexpression of the HD only Ey forms antagonizes ectopic eye induction. These studies revealed a novel function of Ey HD on cell growth and a novel antagonistic effect of Ey HD on Ey PD-dependent eye induction. We further show the third helix of the Ey HD can directly interact with the RED subdomain in Ey PD and that deletion of the HD increased the binding of Ey PD to its target. These results suggest that the direct interaction between the HD and the PD potentially mediates their antagonistic effects. Since different Ey splicing forms are expressed in overlapping regions during normal development, we speculate that the expression ratios of the different Ey splice forms potentially contribute to the regulation of growth and differentiation of these tissues.
Animals
;
Animals, Genetically Modified
;
metabolism
;
Binding Sites
;
Cell Differentiation
;
Cell Proliferation
;
DNA-Binding Proteins
;
metabolism
;
Drosophila
;
metabolism
;
Drosophila Proteins
;
antagonists & inhibitors
;
metabolism
;
Enhancer Elements, Genetic
;
Eye Proteins
;
antagonists & inhibitors
;
metabolism
;
Homeodomain Proteins
;
antagonists & inhibitors
;
metabolism
;
PAX6 Transcription Factor
;
Paired Box Transcription Factors
;
antagonists & inhibitors
;
metabolism
;
Protein Structure, Tertiary
;
Repressor Proteins
;
antagonists & inhibitors
;
metabolism
;
Retina
;
cytology
;
metabolism
;
Wings, Animal
;
growth & development