1.FUS/TLS forms cytoplasmic aggregates, inhibits cell growth and interacts with TDP-43 in a yeast model of amyotrophic lateral sclerosis.
Dmitry KRYNDUSHKIN ; Reed B WICKNER ; Frank SHEWMAKER
Protein & Cell 2011;2(3):223-236
Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by the premature loss of motor neurons. While the underlying cellular mechanisms of neuron degeneration are unknown, the cytoplasmic aggregation of several proteins is associated with sporadic and familial forms of the disease. Both wild-type and mutant forms of the RNA-binding proteins FUS and TDP-43 accumulate in cytoplasmic inclusions in the neurons of ALS patients. It is not known if these so-called proteinopathies are due to a loss of function or a gain of toxicity resulting from the formation of cytoplasmic aggregates. Here we present a model of FUS toxicity using the yeast Saccharomyces cerevisiae in which toxicity is associated with greater expression and accumulation of FUS in cytoplasmic aggregates. We find that FUS and TDP-43 have a high propensity for co-aggregation, unlike the aggregation patterns of several other aggregation-prone proteins. Moreover, the biophysical properties of FUS aggregates in yeast are distinctly different from many amyloidogenic proteins, suggesting they are not composed of amyloid.
Amyotrophic Lateral Sclerosis
;
metabolism
;
pathology
;
Cell Proliferation
;
drug effects
;
Cytoplasm
;
drug effects
;
metabolism
;
DNA-Binding Proteins
;
genetics
;
metabolism
;
Detergents
;
pharmacology
;
Humans
;
Kinetics
;
Peptides
;
metabolism
;
Prions
;
chemistry
;
metabolism
;
Protein Binding
;
drug effects
;
Protein Multimerization
;
drug effects
;
Protein Structure, Quaternary
;
Protein Transport
;
RNA-Binding Protein FUS
;
chemistry
;
genetics
;
metabolism
;
Saccharomyces cerevisiae
;
cytology
;
drug effects
;
genetics
;
metabolism
;
Saccharomyces cerevisiae Proteins
;
chemistry
;
metabolism
2.Effects of sevoflurane on tight junction protein expression and PKC-alpha translocation after pulmonary ischemia-reperfusion injury.
Jun CHAI ; Bo LONG ; Xiaomei LIU ; Yan LI ; Ning HAN ; Ping ZHAO ; Weimin CHEN
Experimental & Molecular Medicine 2015;47(6):e167-
Pulmonary dysfunction caused by ischemia-reperfusion injury is the leading cause of mortality in lung transplantation. We aimed to investigate the effects of sevoflurane pretreatment on lung permeability, tight junction protein occludin and zona occludens 1 (ZO-1) expression, and translocation of protein kinase C (PKC)-alpha after ischemia-reperfusion. A lung ischemia-reperfusion injury model was established in 96 male Wistar rats following the modified Eppinger method. The rats were divided into four groups with 24 rats in each group: a control (group C), an ischemia-reperfusion group (IR group), a sevoflurane control group (sev-C group), and a sevoflurane ischemia-reperfusion group (sev-IR group). There were three time points in each group: ischemic occlusion for 45 min, reperfusion for 60 min and reperfusion for 120 min; and there were six rats per time point. For the 120-min reperfusion group, six extra rats underwent bronchoalveolar lavage. Mean arterial pressure (MAP) and pulse oxygen saturation (SpO2) were recorded at each time point. The wet/dry weight ratio and lung permeability index (LPI) were measured. Quantitative RT-PCR and Western blot were used to measure pulmonary occludin and ZO-1, and Western blot was used to measure cytosolic and membranous PKC-alpha in the lung. Lung permeability was significantly increased after ischemia-reperfusion. Sevoflurane pretreatment promoted pulmonary expression of occludin and ZO-1 after reperfusion and inhibited the translocation of PKC-alpha. In conclusion, sevoflurane pretreatment alleviated lung permeability by upregulating occludin and ZO-1 after ischemia-reperfusion. Sevoflurane pretreatment inhibited the translocation and activation of PKC-alpha, which also contributed to the lung-protective effect of sevoflurane.
Anesthetics, Inhalation/*therapeutic use
;
Animals
;
Capillary Permeability/drug effects
;
Gene Expression Regulation/drug effects
;
Lung/*drug effects/metabolism/pathology
;
Lung Diseases/*drug therapy/genetics/metabolism/pathology
;
Male
;
Methyl Ethers/*therapeutic use
;
Protein Kinase C-alpha/*metabolism
;
Protein Transport/drug effects
;
RNA, Messenger/genetics
;
Rats, Wistar
;
Reperfusion Injury/*drug therapy/genetics/metabolism/pathology
;
Zonula Occludens-1 Protein/analysis/*genetics
3.Role of ADAM10 and ADAM17 in CD16b shedding mediated by different stimulators.
Sha GUO ; Min PENG ; Qing ZHAO ; Wei ZHANG
Chinese Medical Sciences Journal 2012;27(2):73-79
OBJECTIVETo investigate the main proteinases responsible for CD16b shedding under different stimulators.
METHODSHEK293 cell line stably expressing CD16b was constructed by lentivirus system. The cell line was then overexpressed with a disintegrin and metalloproteinase 10 (ADAM10) or ADAM17, suppressed with short hairpin RNA of ADAM10 or ADAM17, and reconstituted with ADAM10 or ADAM17, respectively. After each treatment, the cell line was stimulated with ionomycin or phorbol 12-myristate- 13-acetate (PMA) for 12 hours. The soluble CD16b released from cell membrane was detected by immunoprecipition and immunoblot. Quantitation was then implemented to compare the amount of soluble CD16b in cell supernatant after stimulation.
RESULTSHEK293 cell line stably expressing CD16b was successfully established. When CD16b expressing cell line was overexpressed with ADAM10, shedding of CD16b was increased after stimulation with ionomycin but not PMA; when the cell line overexpressed with ADAM17, shedding of CD16b was increased after stimulation with PMA but not ionomycin. Similarly, when ADAM10 was suppressed by short hairpin RNA, CD16b shedding was decreased after stimulation with ionomycin; when ADAM17 was suppressed by short hairpin RNA, CD16b shedding was decreased after stimulation with PMA. The shedding of CD16b was increased again when CD16b expressing cell line was reconstituted with ADAM10 and stimulated by ionomycin or reconstituted with ADAM17 and stimulated by PMA.
CONCLUSIONSBoth ADAM10 and ADAM17 could shed CD16b, but they possess differed preferences. ADAM10 is the main sheddase under stimulation of ionomycin, while ADAM17 is the main sheddase under stimulation of PMA.
ADAM Proteins ; genetics ; metabolism ; physiology ; ADAM10 Protein ; ADAM17 Protein ; Amyloid Precursor Protein Secretases ; genetics ; metabolism ; physiology ; Calcium Ionophores ; pharmacology ; Carcinogens ; pharmacology ; Cells, Cultured ; Drug Evaluation, Preclinical ; GPI-Linked Proteins ; metabolism ; Gene Knockdown Techniques ; HEK293 Cells ; Humans ; Ionomycin ; pharmacology ; Membrane Proteins ; genetics ; metabolism ; physiology ; Protein Processing, Post-Translational ; drug effects ; Protein Transport ; drug effects ; Proteolysis ; drug effects ; Receptors, IgG ; metabolism ; Tetradecanoylphorbol Acetate ; pharmacology ; Transfection
4.Hrs inhibits citron kinase-mediated HIV-1 budding via its FYVE domain.
Jiwei DING ; Lishan SU ; Guangxia GAO
Protein & Cell 2011;2(6):470-476
Hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) is a key component of the endosomal sorting complexes required for transport and has been demonstrated to play a regulatory role in endocytosis/exocytosis and the accumulation of internal vesicles in multivesicular bodies. Citron kinase is a Ser/The kinase that we previously reported to enhance human immunodeficiency virus type 1 (HIV-1) virion production. However, the relationship between Hrs and citron kinase in HIV-1 production remains elusive. Here, we report that Hrs interacts with citron kinase via its FYVE domain. Overexpression of Hrs or the FYVE domain resulted in a significant decrease in HIV-1 virion production. Depletion of Hrs by RNA interference in HEK293T cells increased HIV-1 virion production and enhanced the activity of citron kinase. These data suggest that Hrs inhibits HIV-1 production by inhibiting citron kinase-mediated exocytosis.
Down-Regulation
;
Endosomal Sorting Complexes Required for Transport
;
genetics
;
metabolism
;
Endosomes
;
metabolism
;
Exocytosis
;
Gene Expression
;
Gene Silencing
;
drug effects
;
HEK293 Cells
;
HIV Infections
;
genetics
;
metabolism
;
virology
;
HIV-1
;
drug effects
;
genetics
;
growth & development
;
Humans
;
Immunoprecipitation
;
Intracellular Signaling Peptides and Proteins
;
genetics
;
metabolism
;
Microscopy, Fluorescence
;
Phosphoproteins
;
genetics
;
metabolism
;
Plasmids
;
Protein Binding
;
drug effects
;
genetics
;
Protein Interaction Domains and Motifs
;
Protein Structure, Tertiary
;
Protein Transport
;
Protein-Serine-Threonine Kinases
;
genetics
;
metabolism
;
RNA, Small Interfering
;
pharmacology
;
Transfection
;
Virion
;
drug effects
;
genetics
;
growth & development
;
Virus Release
;
drug effects
;
Virus Replication
;
drug effects
5.Protective effect of diosgenin on chondrocytes mediated by JAK2/STAT3 signaling pathway in mice with osteoarthritis.
Jun LIU ; Xiaole HE ; Ping ZHEN ; Shenghu ZHOU ; Xusheng LI
Journal of Zhejiang University. Medical sciences 2016;45(5):453-460
To investigate the effect of diosgenin (Dgn) on chondrocytes and its relation to JAK2/STAT3 signaling pathway in mice with osteoarthritis (OA).Fifteen male C57BL/6 mice were randomly divided into three groups:control group, OA group and OA+Dgn group. After 4 weeks of treatment, the histopathological changes of cartilage tissue were observed by toluidine blue staining under light microscopy and the ultrastructure of chondrocytes was observed under electron microscopy. The primarily cultured chondrocytes of OA mice were randomly divided into 4 groups:(1) OA group, (2) Dgn group, (3) Dgn+AG490 group, (4) AG490 group. The expression of p-JAK2, p-STAT3, Bax, succinate dehydrogenase (SDH) and cytochrome c oxidase (COX) were detected by Western blotting, and superoxide dismutase (SOD) was detected using colorimetric method.The morphological observation showed that the chondrocytes of OA group presented considerable pathological changes, while the chondrocytes in OA+Dgn group maintained intact membrane. Electron microscopy observation found obvious injury in cartilage tissues of OA group, while that in OA+Dgn group remained smooth. Compared with OA group, the expressions of p-JAK2 and p-STAT3 in chondrocytes of Dgn group were increased (all<0.05), and the expressions of Bax protein, SDH, COX and SOD were decreased (all<0.05). While compared with Dgn group, the expressions of p-JAK2, p-STAT3, SDH, COX and SOD in chondrocytes of Dgn+AG490 group were decreased (all<0.05), and the expression of Bax protein was increased (<0.05).Diosgenin can inhibit apoptosis and increase mitochondrial oxidative stress capacity of chondrocytes in mice with osteoarthritis, which is closely related to the activation of JAK2/STAT3 signaling pathway.
Animals
;
Apoptosis
;
drug effects
;
Cartilage
;
drug effects
;
pathology
;
Chondrocytes
;
chemistry
;
drug effects
;
pathology
;
Diosgenin
;
pharmacology
;
Electron Transport Complex IV
;
metabolism
;
Janus Kinase 2
;
drug effects
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Mitochondria
;
drug effects
;
genetics
;
Osteoarthritis
;
genetics
;
physiopathology
;
Oxidative Stress
;
drug effects
;
STAT3 Transcription Factor
;
drug effects
;
Signal Transduction
;
Succinate Dehydrogenase
;
metabolism
;
Superoxide Dismutase
;
metabolism
;
Tyrphostins
;
pharmacology
;
bcl-2-Associated X Protein
;
metabolism
6.Kurarinone promotes TRAIL-induced apoptosis by inhibiting NF-kappaB-dependent cFLIP expression in HeLa cells.
Ok Won SEO ; Jung Hwan KIM ; Kwang Soon LEE ; Kyu Sun LEE ; Ji Hee KIM ; Moo Ho WON ; Kwon Soo HA ; Young Guen KWON ; Young Myeong KIM
Experimental & Molecular Medicine 2012;44(11):653-664
This study was designed to investigate the effects of the prenylated flavonoid kurarinone on TNF-related apoptosis inducing ligand (TRAIL)-induced apoptosis and its underlying mechanism. A low dose of kurarinone had no significant effect on apoptosis, but this compound markedly promoted tumor cell death through elevation of Bid cleavage, cytochrome c release and caspase activation in HeLa cells treated with TRAIL. Caspase inhibitors inhibited kurarinone-mediated cell death, which indicates that the cytotoxic effect of this compound is mediated by caspase-dependent apoptosis. The cytotoxic effect of kurarinone was not associated with expression levels of Bcl-2 and IAP family proteins, such as Bcl-2, Bcl-xL, Bid, Bad, Bax, XIAP, cIAP-1 and cIAP-2. In addition, this compound did not regulate the death-inducing receptors DR4 and DR5. On the other hand, kurarinone significantly inhibited TRAIL-induced IKK activation, IkappaB degradation and nuclear translocation of NF-kappaB, as well as effectively suppressed cellular FLICE-inhibitory protein long form (cFLIPL) expression. The synergistic effects of kurarinone on TRAIL-induced apoptosis were mimicked when kurarinone was replaced by the NF-kappaB inhibitor withaferin A or following siRNA-mediated knockdown of cFLIPL. Moreover, cFLIP overexpression effectively antagonized kurarinone-mediated TRAIL sensitization. These data suggest that kurarinone sensitizes TRAIL-induced tumor cell apoptosis via suppression of NF-kappaB-dependent cFLIP expression, indicating that this compound can be used as an anti-tumor agent in combination with TRAIL.
Antineoplastic Agents/*pharmacology
;
Apoptosis/*drug effects
;
CASP8 and FADD-Like Apoptosis Regulating Protein/*genetics/metabolism
;
Caspase 3/metabolism
;
Caspase 8/metabolism
;
Drug Synergism
;
Enzyme Activation/drug effects
;
Flavonoids/*pharmacology
;
Gene Expression/drug effects
;
Gene Knockdown Techniques
;
HeLa Cells
;
Humans
;
NF-kappa B/antagonists & inhibitors/*metabolism
;
Protein Transport/drug effects
;
RNA, Small Interfering/genetics
;
Signal Transduction
;
TNF-Related Apoptosis-Inducing Ligand/*physiology
;
Up-Regulation/drug effects
7.Cytosolic accumulation of gammaH2AX is associated with tropomyosin-related kinase A-induced cell death in U2OS cells.
Eun Joo JUNG ; Choong Won KIM ; Deok Ryong KIM
Experimental & Molecular Medicine 2008;40(3):276-285
Tropomyosin-related kinase A (TrkA) plays an important role in cell survival, differentiation, and apoptosis in various neuronal and nonneuronal cell types. Here we show that TrkA overexpression by the Tet-On system mimics NGF-mediated activation pathways in the absence of nerve growth factor (NGF) stimulation in U2OS cells. In addition, p53 upregulation upon DNA damage was inhibited by TrkA, and p21 was upregulated by TrkA in a p53-independent manner. TrkA overexpression caused cell death by interrupting cell cycle progression, and TrkA-induced cell death was diminished in the presence of its specific inhibitor GW441756. Interestingly, TrkA-mediated cell death was strongly related to gammaH2AX production and poly (ADP-ribose) polymerase cleavage in the absence of DNA damage inducer. In this study, we also reveal thatgammagammaH2AX production by TrkA is blocked by TrkA kinase inhibitors K-252a and GW441756, and it is also significantly inhibited by JNK inhibitor SP600125. Moreover, reduction of cell viability by TrkA was strongly suppressed by SP600125 treatment, suggesting a critical role of JNK in TrkA-induced cell death. We also found that gammaH2AX and TrkA were colocalized in cytosol in the absence of DNA damage, and the nuclear localization of gammaH2AX induced by DNA damage was partly altered to cytosol by TrkA overexpression. Our results suggest that the abnormal cytosolic accumulation of gammaH2AX is implicated in TrkA-induced cell death in the absence of DNA damage.
Anthracenes/pharmacology
;
Apoptosis/drug effects/*genetics
;
Carbazoles/pharmacology
;
Cell Cycle/drug effects/genetics
;
Cell Line, Tumor
;
Cyclin-Dependent Kinase Inhibitor p21/*biosynthesis/genetics
;
Cytosol/drug effects/enzymology/ultrastructure
;
DNA Damage/drug effects/genetics
;
Doxorubicin/pharmacology
;
Histones/*metabolism
;
Humans
;
Indole Alkaloids/pharmacology
;
MAP Kinase Kinase 4/antagonists & inhibitors
;
Nerve Growth Factor/antagonists & inhibitors/metabolism
;
Phosphorylation/drug effects
;
Protein Binding
;
*Protein Transport/drug effects/genetics
;
Receptor, trkA/antagonists & inhibitors/*genetics/metabolism
;
Signal Transduction
;
Transfection
8.Wuling san ameliorates urate under-excretion and renal dysfunction in hyperuricemic mice.
Xiao-Qin DING ; Ying PAN ; Xing WANG ; Yu-Xiang MA ; Ling-Dong KONG
Chinese Journal of Natural Medicines (English Ed.) 2013;11(3):214-221
AIM:
The present study was undertaken to characterize the effects of Wuling San on urate excretion and renal function, and explore its possible mechanisms of action in hyperuricemic mice.
METHODS:
Mice were administered with 250 mg·kg(-1) potassium oxonate by gavage once daily (10 animals/group) for seven consecutive days to develop a hyperuricemia model. Different doses of Wuling powder were orally initiated on the day 1 h after oxonate was given, separately. Allopurinol was used as a positive control. Serum and urine levels of uric acid and creatinine, and fractional excretion of uric acid (FEUA) were measured in hyperuricemic mice treated with Wuling San and allopurinol. Simultaneously, renal mRNA and protein levels of urate transporter 1 (mURAT1), glucose transporter 9 (mGLUT9), organic anion transporter 1 (mOAT1), as well as organic cation/carnitine transporters mOCT1, mOCT2 and mOCTN2, were assayed by semi-quantitative RT-PCR and Western blot methods, respectively.
RESULTS AND CONCLUSION
Compared to the hyperuricemia control group, Wuling San significantly reduced serum uric acid and creatinine levels, increased 24 h urate and creatinine excretion, and FEUA in hyperuricemic mice, exhibiting its ability to enhance urate excretion and improve kidney function. Wuling San was found to down-regulate mRNA and protein levels of mURAT1 and mGLUT9, as well as up-regulate mOAT1 in the kidney of hyperuricemic mice. Moreover, Wuling San up-regulated renal mRNA and protein levels of mOCT1, mOCT2 and mOCTN2, leading to kidney protection in this model.
Animals
;
Drugs, Chinese Herbal
;
administration & dosage
;
Glucose Transport Proteins, Facilitative
;
genetics
;
metabolism
;
Humans
;
Hyperuricemia
;
drug therapy
;
genetics
;
metabolism
;
Kidney
;
drug effects
;
metabolism
;
Male
;
Mice
;
Organic Anion Transport Protein 1
;
genetics
;
metabolism
;
Organic Anion Transporters
;
genetics
;
metabolism
;
Up-Regulation
;
drug effects
;
Uric Acid
;
metabolism
9.IL-17 Induces MPTP opening through ERK2 and P53 signaling pathway in human platelets.
Jing YUAN ; Pei-wu DING ; Miao YU ; Shao-shao ZHANG ; Qi LONG ; Xiang CHENG ; Yu-hua LIAO ; Min WANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(5):679-683
The opening of mitochondrial permeability transition pore (MPTP) plays a critical role in platelet activation. However, the potential trigger of the MPTP opening in platelet activation remains unknown. Inflammation is the crucial trigger of platelet activation. In this study, we aimed to explore whether and how the important inflammatory cytokine IL-17 is associated with MPTP opening in platelets activation by using MPTP inhibitor cyclosporine-A (CsA). The mitochondrial membrane potential (ΔΨm) was detected to reflect MPTP opening levels. And the platelet aggregation, activation, and the primary signaling pathway were also tested. The results showed that the MPTP opening levels were increased and Δψm reduced in platelets administrated with IL-17. Moreover, the levels of aggregation, CD62P, PAC-1, P53 and the phosphorylation of ERK2 were enhanced along with the MPTP opening in platelets pre-stimulated with IL-17. However, CsA attenuated these effects triggered by IL-17. It was suggested that IL-17 could induce MPTP opening through ERK2 and P53 signaling pathway in platelet activation and aggregation.
Blood Platelets
;
cytology
;
drug effects
;
metabolism
;
Cell Separation
;
Cyclosporine
;
pharmacology
;
Dual Specificity Phosphatase 2
;
genetics
;
metabolism
;
Gene Expression Regulation
;
Humans
;
Interleukin-17
;
metabolism
;
pharmacology
;
Membrane Potential, Mitochondrial
;
drug effects
;
Mitochondria
;
drug effects
;
metabolism
;
Mitochondrial Membrane Transport Proteins
;
agonists
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Mitogen-Activated Protein Kinase 1
;
genetics
;
metabolism
;
P-Selectin
;
genetics
;
metabolism
;
Phosphorylation
;
drug effects
;
Platelet Activation
;
drug effects
;
Platelet Aggregation
;
drug effects
;
Primary Cell Culture
;
Signal Transduction
;
Tumor Suppressor Protein p53
;
genetics
;
metabolism
10.Research progress on the effect of glucocorticoid receptor signaling pathways in bladder cancer.
Sheng FENG ; Jijun CHEN ; Yichun ZHENG
Journal of Zhejiang University. Medical sciences 2016;45(6):655-660
Glucocorticoid receptor (GR) is identified as a member of nuclear receptor family. To exert its biological action, the ligand bound GR is translocated from the cytoplasm into the nucleus by regulating transcriptional signals of related genes. In clinical practice, the effects of glucocorticoid are often mediated by GR signaling pathways. An increasing number of studies have indicated that GR signaling pathways play an essential role in the proliferation, invasion and prognosis of bladder cancer. Meanwhile, the new-generation selective GR activator improves its anti-tumor effects, and at the same time reduces the adverse reactions of hormones, which probably raises the prospect for the treatment of bladder cancer.
Animals
;
Antineoplastic Agents
;
pharmacology
;
Cell Nucleus
;
genetics
;
Humans
;
Prognosis
;
Protein Transport
;
genetics
;
Receptors, Glucocorticoid
;
agonists
;
physiology
;
Signal Transduction
;
genetics
;
Transcriptional Activation
;
drug effects
;
physiology
;
Urinary Bladder Neoplasms
;
genetics
;
physiopathology