1.Modeling of Human Genetic Diseases Via Cellular Reprogramming.
Min Yong KANG ; Ji Hoon SUH ; Yong Mahn HAN
Journal of Genetic Medicine 2012;9(2):67-72
The generation of induced pluripotent stem cells (iPSCs) derived from patients' somatic cells provides a new paradigm for studying human genetic diseases. Human iPSCs which have similar properties of human embryonic stem cells (hESCs) provide a powerful platform to recapitulate the disease-specific cell types by using various differentiation techniques. This promising technology has being realized the possibility to explore pathophysiology of many human genetic diseases at the molecular and cellular levels. Furthermore, disease-specific human iPSCs can also be used for patient-based drug screening and new drug discovery at the stage of the pre-clinical test in vitro. In this review, we summarized the concept and history of cellular reprogramming or iPSC generation and highlight recent progresses for disease modeling using patient-specific iPSCs.
Drug Discovery
;
Drug Evaluation, Preclinical
;
Embryonic Stem Cells
;
Humans
;
Induced Pluripotent Stem Cells
;
Nuclear Reprogramming
2.Modeling of Human Genetic Diseases Via Cellular Reprogramming.
Min Yong KANG ; Ji Hoon SUH ; Yong Mahn HAN
Journal of Genetic Medicine 2012;9(2):67-72
The generation of induced pluripotent stem cells (iPSCs) derived from patients' somatic cells provides a new paradigm for studying human genetic diseases. Human iPSCs which have similar properties of human embryonic stem cells (hESCs) provide a powerful platform to recapitulate the disease-specific cell types by using various differentiation techniques. This promising technology has being realized the possibility to explore pathophysiology of many human genetic diseases at the molecular and cellular levels. Furthermore, disease-specific human iPSCs can also be used for patient-based drug screening and new drug discovery at the stage of the pre-clinical test in vitro. In this review, we summarized the concept and history of cellular reprogramming or iPSC generation and highlight recent progresses for disease modeling using patient-specific iPSCs.
Drug Discovery
;
Drug Evaluation, Preclinical
;
Embryonic Stem Cells
;
Humans
;
Induced Pluripotent Stem Cells
;
Nuclear Reprogramming
3.Cell reprogramming: control key genes to obtain needed cells.
Acta Academiae Medicinae Sinicae 2011;33(6):689-695
Cell reprogramming is a progress in which the memory of a mature cell is erased and then the cell develops novel phenotype and function; ultimately, the fate of the cell changes. Cell reprogramming usually occurs at genes expression levels that no genomic DNA sequence change will be involved. By changing the programs of the genetic expressions of cells in terms of space and time, cell reprogramming alters the differentiation of cells and thus produces the required cells. Further research on cells reprogramming will elucidate the mechanisms that govern the cell development, and thus provides more information of the sources of seed cells used for regeneration medicine. More cells differentiated from many terminally differentiated cells will be obtained, which is extremely important for the understanding of molecular differentiation and for the development of cell replacement therapy. This article summarizes the classification, influencing factors, approaches and latest advances of cells reprogramming.
Animals
;
Cell Dedifferentiation
;
genetics
;
Cell Differentiation
;
genetics
;
Cellular Reprogramming
;
Gene Expression
;
Humans
;
Nuclear Transfer Techniques
4.Direct generation of pluripotent stem cells from differentiated somatic cells.
Linfeng LI ; Weijun GUAN ; Yuehui MA ; Han LI ; Xiujuan BAI ; Xuelian GONG
Chinese Journal of Biotechnology 2008;24(10):1695-1701
Embryonic stem (ES) cells have the unique capacity to proliferate extensively and maintain the potential to differentiate into advanced derivatives of all three primary germ layers. ES cell lines can also be generated from human blastocyst embryos and are considered promising donor sources for cell transplantation therapies for diseases such as juvenile diabetes, Parkinson's disease, and heart failure. However, as for organ transplants, tissue rejection remains a significant concern for ES cell transplantation. Another concern is the use of human embryos. One possible means to avoid these issues is by reprogramming the nuclei of differentiated cells to ES cell-like, pluripotent cells. This review discusses the potential of these strategies to generate tailor-made pluripotent stem cells and the role of transcription factors in the reprogramming process.
Cell Culture Techniques
;
Cell Differentiation
;
physiology
;
Cells, Cultured
;
Cellular Reprogramming
;
Humans
;
Nuclear Transfer Techniques
;
Pluripotent Stem Cells
;
cytology
5.Implications and limitations of cellular reprogramming for psychiatric drug development.
Brian T D TOBE ; Michael G BRANDEL ; Jeffrey S NYE ; Evan Y SNYDER
Experimental & Molecular Medicine 2013;45(11):e59-
Human-induced pluripotent stem cells (hiPSCs) derived from somatic cells of patients have opened possibilities for in vitro modeling of the physiology of neural (and other) cells in psychiatric disease states. Issues in early stages of technology development include (1) establishing a library of cells from adequately phenotyped patients, (2) streamlining laborious, costly hiPSC derivation and characterization, (3) assessing whether mutations or other alterations introduced by reprogramming confound interpretation, (4) developing efficient differentiation strategies to relevant cell types, (5) identifying discernible cellular phenotypes meaningful for cyclic, stress induced or relapsing-remitting diseases, (6) converting phenotypes to screening assays suitable for genome-wide mechanistic studies or large collection compound testing and (7) controlling for variability in relation to disease specificity amidst low sample numbers. Coordination of material for reprogramming from patients well-characterized clinically, genetically and with neuroimaging are beginning, and initial studies have begun to identify cellular phenotypes. Finally, several psychiatric drugs have been found to alter reprogramming efficiency in vitro, suggesting further complexity in applying hiPSCs to psychiatric diseases or that some drugs influence neural differentiation moreso than generally recognized. Despite these challenges, studies utilizing hiPSCs may eventually serve to fill essential niches in the translational pipeline for the discovery of new therapeutics.
Animals
;
Antipsychotic Agents/pharmacology
;
*Drug Discovery
;
Humans
;
Induced Pluripotent Stem Cells/cytology/*drug effects/metabolism
;
Mental Disorders/*drug therapy/metabolism
;
*Nuclear Reprogramming
6.The progress of research on the influencing factor of nuclear transfer.
Journal of Biomedical Engineering 2009;26(4):895-899
Nuclear transfer (NT) is a new cloning technology developed in recent years. NT methods consist of electrofusion, NT mediated by polyethylene glycol (PEG) and microinjection. The success of somatic nuclear transfer depends on the source of donor nucleus, developmental stage of recipient cytoplasts, cell cycle synchrony of donor nucleus. Different methods of harvesting cells have effect on the efficiency of NT. The somatic nucleus will be reprogrammed after NT and will restore a totipotent state in order to undergo development.
Animals
;
Cell Differentiation
;
physiology
;
Cell Division
;
Cells, Cultured
;
Cellular Reprogramming
;
Cloning, Organism
;
Embryo Transfer
;
Humans
;
Microinjections
;
Nuclear Transfer Techniques
;
trends
;
Oocytes
;
cytology
;
physiology
7.Delineating nuclear reprogramming.
Protein & Cell 2012;3(5):329-345
Nuclear reprogramming is described as a molecular switch, triggered by the conversion of one cell type to another. Several key experiments in the past century have provided insight into the field of nuclear reprogramming. Previously deemed impossible, this research area is now brimming with new findings and developments. In this review, we aim to give a historical perspective on how the notion of nuclear reprogramming was established, describing main experiments that were performed, including (1) somatic cell nuclear transfer, (2) exposure to cell extracts and cell fusion, and (3) transcription factor induced lineage switch. Ultimately, we focus on (4) transcription factor induced pluripotency, as initiated by a landmark discovery in 2006, where the process of converting somatic cells to a pluripotent state was narrowed down to four transcription factors. The conception that somatic cells possess the capacity to revert to an immature status brings about huge clinical implications including personalized therapy, drug screening and disease modeling. Although this technology has potential to revolutionize the medical field, it is still impeded by technical and biological obstacles. This review describes the effervescent changes in this field, addresses bottlenecks hindering its advancement and in conclusion, applies the latest findings to overcome these issues.
Animals
;
Cell Fusion
;
Cell Lineage
;
genetics
;
Cellular Reprogramming
;
genetics
;
Humans
;
Nuclear Transfer Techniques
;
Pluripotent Stem Cells
;
cytology
;
metabolism
;
Transcription Factors
;
metabolism
8.The application of co-culture system on the in vitro development of bovine somatic nuclear transferred embryos.
Yue-Hong WU ; Zhi-Xing AN ; Yong ZHANG ; Xiang-Chen LI ; Yu-Long HE ; Feng-Jun LIU
Chinese Journal of Biotechnology 2006;22(2):306-310
To establish a co-culture system of nuclear transferred embryos in bovine, effects of co-culture cell types, passages and cryopreservation as well as addition of BFF or FBS were investigated. The results showed that embryos co-cultured with oviductal epithelial cell and granulosa cell achieved significantly higher blastocyst rate compared with the control group (P < 0.05) and co-cultured with oviductal epithelial cell had more embryo cell number than those with granulosa cell. Passages of co-culture cells significantly affected the blastocyst rate and embryo cell number (P < 0.05), and cryopreservation decreased the blastocyst rate and embryo cell number remarkably. Supplemention of BFF increased blastocyste rate significantly (P < 0.05). In conclusion, co-cultured with fresh primary oviductal epithelial cell along with addition of 10% BFF in SOFaa could improve development of nuclear transferred bovine embryo in vitro.
Animals
;
Cattle
;
Cellular Reprogramming
;
Cloning, Organism
;
methods
;
Coculture Techniques
;
Culture Media
;
Embryo, Mammalian
;
cytology
;
drug effects
;
Embryonic Development
;
Epithelial Cells
;
cytology
;
drug effects
;
Fallopian Tubes
;
cytology
;
Female
;
Granulosa Cells
;
cytology
;
drug effects
;
Nuclear Transfer Techniques
9.Role of circadian gene Clock during differentiation of mouse pluripotent stem cells.
Chao LU ; Yang YANG ; Ran ZHAO ; Bingxuan HUA ; Chen XU ; Zuoqin YAN ; Ning SUN ; Ruizhe QIAN
Protein & Cell 2016;7(11):820-832
Biological rhythms controlled by the circadian clock are absent in embryonic stem cells (ESCs). However, they start to develop during the differentiation of pluripotent ESCs to downstream cells. Conversely, biological rhythms in adult somatic cells disappear when they are reprogrammed into induced pluripotent stem cells (iPSCs). These studies indicated that the development of biological rhythms in ESCs might be closely associated with the maintenance and differentiation of ESCs. The core circadian gene Clock is essential for regulation of biological rhythms. Its role in the development of biological rhythms of ESCs is totally unknown. Here, we used CRISPR/CAS9-mediated genetic editing techniques, to completely knock out the Clock expression in mouse ESCs. By AP, teratoma formation, quantitative real-time PCR and Immunofluorescent staining, we did not find any difference between Clock knockout mESCs and wild type mESCs in morphology and pluripotent capability under the pluripotent state. In brief, these data indicated Clock did not influence the maintaining of pluripotent state. However, they exhibited decreased proliferation and increased apoptosis. Furthermore, the biological rhythms failed to develop in Clock knockout mESCs after spontaneous differentiation, which indicated that there was no compensational factor in most peripheral tissues as described in mice models before (DeBruyne et al., 2007b). After spontaneous differentiation, loss of CLOCK protein due to Clock gene silencing induced spontaneous differentiation of mESCs, indicating an exit from the pluripotent state, or its differentiating ability. Our findings indicate that the core circadian gene Clock may be essential during normal mESCs differentiation by regulating mESCs proliferation, apoptosis and activity.
Animals
;
Apoptosis
;
Base Sequence
;
CLOCK Proteins
;
genetics
;
metabolism
;
CRISPR-Cas Systems
;
Cell Differentiation
;
Cell Proliferation
;
Cellular Reprogramming
;
Circadian Clocks
;
genetics
;
Gene Editing
;
Gene Expression Regulation
;
Gene Knockout Techniques
;
Hepatocyte Nuclear Factor 3-beta
;
genetics
;
metabolism
;
Induced Pluripotent Stem Cells
;
cytology
;
metabolism
;
Mice
;
Mouse Embryonic Stem Cells
;
cytology
;
metabolism
;
SOXB1 Transcription Factors
;
genetics
;
metabolism