1.Subcellular localization of GTPase of immunity-associated protein 2.
Hong Quan QIN ; You ZHENG ; Man Na WANG ; Zheng Rong ZHANG ; Zu Biao NIU ; Li MA ; Qiang SUN ; Hong Yan HUANG ; Xiao Ning WANG
Journal of Peking University(Health Sciences) 2020;52(2):221-226
OBJECTIVE:
To analyze the subcellular localization of GTPase of immunity-associated protein 2 (GIMAP2) for the further functional study.
METHODS:
In the study, we first obtained the protein sequences of GTPase of immunity-associated protein 2 (GIMAP2) from National Center for Biotechnology Information (NCBI) database, and then performed a prediction analysis of its transmembrane structure, nuclear localization signal (NLS), nuclear export signal (NES) and subcellular localization through bioinformatics online tools. GIMAP2 gene amplified by PCR was inserted into the expression vector pQCXIP-mCherry-N1 and positive clones were selected by ampicillin resistance. After using methods to extract and purify, the sequenced recombinant plasmid pQCXIP-GIMAP2-mCherry, together with the retroviral packaging plasmids VSVG and Gag/pol, was transferred into HEK293FT cells by liposomes for virus packaging. The virus supernatant was collected 48 h after transfection and directly infected the human breast cancer cell line MDA-MB-436. Immunofluorescence staining was constructed to detect the localization of endogenous and exogenous GIMAP2 in MDA-MB-436 cells. Meanwhile, green fluorescent chemical dyes were used to label mitochondria, endoplasmic reticulum, and lipid droplets in living MDA-MB-436 cells stably expressing the GIMAP2-mCherry fusion protein. Images for the three dye-labeled organelles and GIMAP2-mCherry fusion protein were captured by super-resolution microscope N-SIM.
RESULTS:
Bioinformatics analysis data showed that GIMAP2 protein composed of 337 amino acids might contain two transmembrane helix (TM) structures at the carboxyl terminus, of which TMs were estimated to contain 40-41 expected amino acids, followed by the residual protein structures toward the cytoplasmic side. NES was located at the 279-281 amino acids of the carboxyl terminus whereas NLS was not found. GIMAP2 might locate in the lumen of the endoplasmic reticulum. Sequencing results indicated that the expression vector pQCXIP-GIMAP2-mCherry was successfully constructed. Fluorescent staining confirmed that GIMAP2-mCherry fusion protein, co-localized well with endogenous GIMAP2, expressed successfully in the endoplasmic reticulum and on the surface of lipid droplets in MDA-MB-436 cells.
CONCLUSION
GIMAP2 localizes in the endoplasmic reticulum and on the surface of LDs, suggesting potential involvement of GIMAP2 in lipid metabolism.
Amino Acid Sequence
;
Cytoplasm
;
GTP Phosphohydrolases
;
Humans
;
Membrane Proteins
;
Nuclear Export Signals
;
Nuclear Localization Signals
;
Recombinant Fusion Proteins
;
Transfection
2.The molecular mechanism for nuclear transport and its application.
Yun Hak KIM ; Myoung Eun HAN ; Sae Ock OH
Anatomy & Cell Biology 2017;50(2):77-85
Transportation between the cytoplasm and the nucleoplasm is critical for many physiological and pathophysiological processes including gene expression, signal transduction, and oncogenesis. So, the molecular mechanism for the transportation needs to be studied not only to understand cell physiological processes but also to develop new diagnostic and therapeutic targets. Recent progress in the research of the nuclear transportation (import and export) via nuclear pore complex and four important factors affecting nuclear transport (nucleoporins, Ran, karyopherins, and nuclear localization signals/nuclear export signals) will be discussed. Moreover, the clinical significance of nuclear transport and its application will be reviewed. This review will provide some critical insight for the molecular design of therapeutics which need to be targeted inside the nucleus.
Active Transport, Cell Nucleus*
;
Carcinogenesis
;
Cell Physiological Processes
;
Cytoplasm
;
Gene Expression
;
Karyopherins
;
Nuclear Localization Signals
;
Nuclear Pore
;
Nuclear Pore Complex Proteins
;
Signal Transduction
;
Transportation
3.Dynamic Regulation of APE1/Ref-1 as a Therapeutic Target Protein
Sunga CHOI ; Hee Kyoung JOO ; Byeong Hwa JEON
Chonnam Medical Journal 2016;52(2):75-80
Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a multifunctional protein that plays a central role in the cellular response to DNA damage and redox regulation against oxidative stress. APE1/Ref-1 functions in the DNA base excision repair pathway, the redox regulation of several transcription factors, and the control of intracellular redox status through the inhibition of reactive oxygen species (ROS) production. APE1/Ref-1 is predominantly localized in the nucleus; however, its subcellular localization is dynamically regulated and it may be found in the mitochondria or elsewhere in the cytoplasm. Studies have identified a nuclear localization signal and a mitochondrial target sequence in APE1/Ref-1, as well as the involvement of the nuclear export system, as determinants of APE1/Ref-1 subcellular distribution. Recently, it was shown that APE1/Ref-1 is secreted in response to hyperacetylation at specific lysine residues. Additionally, post-translational modifications such as phosphorylation, S-nitrosation, and ubiquitination appear to play a role in fine-tuning the activities and subcellular localization of APE1/Ref-1. In this review, we will introduce the multifunctional role of APE1/Ref-1 and its potential usefulness as a therapeutic target in cancer and cardiovascular disease.
Active Transport, Cell Nucleus
;
Biomarkers
;
Cardiovascular Diseases
;
Cytoplasm
;
DNA
;
DNA Damage
;
DNA Repair
;
DNA-(Apurinic or Apyrimidinic Site) Lyase
;
Lysine
;
Mitochondria
;
Nuclear Localization Signals
;
Oxidation-Reduction
;
Oxidative Stress
;
Phosphorylation
;
Protein Processing, Post-Translational
;
Reactive Oxygen Species
;
Transcription Factors
;
Ubiquitin
;
Ubiquitination
4.Prediction of Nuclear Targeting Proteins with Nuclear Localization Signals in Staphylococcus aureus and Nuclear Targeting of beta-lactamase in Host Cells.
Sung Hoon AHN ; Jung Hwa LEE ; Je Chul LEE
Journal of Bacteriology and Virology 2015;45(1):36-43
Nuclear targeting of bacterial proteins in host cells and subsequent interaction with nuclear molecules are an emerging pathogenic mechanism of bacteria. In this study, we predicted the nuclear targeting proteins with nuclear localization signals (NLSs) in Staphylococcus aureus using bioinformatic analysis. A total of 51 proteins of S. aureus, comprising of 24 functional and 27 hypothetical proteins, were predicted to carry putative NLSs. Among them, beta-lactamase and MsrR proteins with the putative NLSs were selected to determine the nuclear targeting in host cells. Fusion proteins of BlaZ-green fluorescent protein (GFP) were evenly distributed in the nuclei of host cells and subsequently induced host cell death. However, fusion proteins of MsrR-GFP were not localized in the nuclei of host cells In conclusion, screening of nuclear targeting proteins with NLSs and determination of their pathology in host cells may open up the new field of S. aureus pathogenesis.
Bacteria
;
Bacterial Proteins
;
beta-Lactamases*
;
Cell Death
;
Computational Biology
;
Mass Screening
;
Nuclear Localization Signals*
;
Pathology
;
Staphylococcus aureus*
5.Analysis of nuclear localization and signal function of MITF protein predisposing to Warrdenburg syndrome.
Hua ZHANG ; Juan FENG ; Hongsheng CHEN ; Jiada LI ; Hunjin LUO ; Yong FENG
Chinese Journal of Medical Genetics 2015;32(6):805-809
OBJECTIVETo study the role of dysfunction of nuclear localization signals (NLS) of MITF protein in the pathogenesis of Waardenburg syndrome.
METHODSEukaryotic expression plasmid pCMV-MITF-Flag was used as a template to generate mutant plasmid pCMV-MITF△NLS-Flag by molecular cloning technique in order to design the mutagenic primers. The UACC903 cells were transfected transiently with MITF and MITF△NLS plasmids, and the luciferase activity assays were performed to determine their impact on the transcriptional activities of target gene tyrosinase (TYR). The oligonucleotide 5'-GAACGAAGAAGAAGATTT-3' was subcloned into pEGFP-N1 to generate recombinant eukaryotic expression plasmid pEGFP-N1-MITF-NLS. The NIH3T3 cells were transfected separately with MITF, MITF△NLS, pEGFP-N1 and pEGFP-N1-NLS plasmids, and their subcellular distribution was observed by immunoflorescence assays.
RESULTSExpression plasmids for the mutant MITF△NLS with loss of core NLS sequence and pEGFP-N1-NLS coupled with MITF△NLS were successfully generated. Compared with the wild-type MITF, MITF△NLS was not able to transactivate the transcriptional activities of promoter TYR and did not affect the normal function of MITF. MITF△NLS was only localized in the cytoplasm and pEGFP-N1 was found in both the cytoplasm and nucleus, whereas pEGFP-N1-NLS was mainly located in the nucleus.
CONCLUSIONThis study has confirmed the localization function of NLS sequence 213ERRRRF218 within the MITF protein. Mutant MITF with loss of NLS has failed to transactivate the transcriptional activities of target gene TYR, which can result in melanocyte defects and cause WS.
Amino Acid Sequence ; Animals ; Cell Line, Tumor ; Genetic Predisposition to Disease ; genetics ; Green Fluorescent Proteins ; genetics ; metabolism ; Humans ; Luciferases ; genetics ; metabolism ; Mice ; Microphthalmia-Associated Transcription Factor ; genetics ; metabolism ; Microscopy, Confocal ; Monophenol Monooxygenase ; genetics ; metabolism ; Mutation ; NIH 3T3 Cells ; Nuclear Localization Signals ; genetics ; Transcriptional Activation ; Transfection ; Waardenburg Syndrome ; diagnosis ; genetics ; metabolism
6.Identification of nuclear localization signals of pseudorabies virus gene UL49.
Chinese Journal of Virology 2014;30(4):436-440
Tegument protein VP22 is encoded by Pseudorabies Virus (PRV) UL49. To identify the nuclear localization signals of UL49, it is necessary to determine the transport mechanism and biological functions of the VP22 protein. In this study, we identified two nuclear localization signals from UL49, NLS1 (5RKTRVA ADETASGARRR21) and NLS2 (241PGRKGKV247). The functional nuclear localization signal (NLS) of UL49 was identified by constructing truncated or site-specific UL49 mutants. The deletion of both NLS1 and NLS2 abrogated UL49 nuclear accumulation, whereas the deletion of NLS1 or NLS2 did not. Therefore, both NLS1 and NLS2 are critical for the nuclear localization of UL49. And our resuts showed that NLS2 is more important in this regard.
Animals
;
COS Cells
;
Cell Nucleus
;
metabolism
;
virology
;
Cercopithecus aethiops
;
Herpesvirus 1, Suid
;
chemistry
;
genetics
;
metabolism
;
Humans
;
Nuclear Localization Signals
;
Protein Transport
;
Pseudorabies
;
metabolism
;
virology
;
Viral Structural Proteins
;
chemistry
;
genetics
;
metabolism
7.Identification of prototype foamy virus Bel1 nuclear localization signal and its corresponding importins.
Qing-Lin MA ; Miao YU ; Di LUO ; Juan TAN ; Wen-Tao QIAO
Chinese Journal of Virology 2014;30(4):346-352
Bel1, a transactivator of prototype foamy virus (PFV), plays pivotal roles in the replication of PFV. Previous studies have shown that Bel1 bears a nuclear localization signal (NLS), but its amino acid sequence remains unclear and the corresponding importins have not been identified. In this report, we inserted various fragments of Bel1 into an EGFP-GST fusion protein and investigated their subcellular localization by fluorescence microscopy. We found that the 215PRQKRPR221 fragment could direct nuclear localization, which accords with the consensus sequence K(K/R)X(K/R) of monopartite NLS. Point mutation experiments revealed that K218, R219, and R221 are essential for the nuclear localization of Bel1. The results of the GST-pulldown showed that the Bel1 fragment with residues 215-223, which bears the NLS, interacts with KPNA1, KPNA6, and KPNA7. This result suggests that KPNA1, KPNA6, and KPNA7 maybe involved in Bel1 nuclear translocation.
Cell Line
;
Cell Nucleus
;
genetics
;
metabolism
;
virology
;
Humans
;
Nuclear Localization Signals
;
genetics
;
metabolism
;
Protein Binding
;
Protein Transport
;
Retroviridae Infections
;
genetics
;
metabolism
;
virology
;
Retroviridae Proteins
;
chemistry
;
genetics
;
metabolism
;
Spumavirus
;
chemistry
;
genetics
;
physiology
;
Trans-Activators
;
chemistry
;
genetics
;
metabolism
;
alpha Karyopherins
;
genetics
;
metabolism
8.A putative pH-dependent nuclear localization signal in the juxtamembrane region of c-Met.
Shubhash Chandra CHAUDHARY ; Min Guk CHO ; Tuyet Thi NGUYEN ; Kyu Sang PARK ; Myung Hee KWON ; Jae Ho LEE
Experimental & Molecular Medicine 2014;46(10):e119-
The C-terminal fragment of the c-Met receptor tyrosine kinase is present in the nuclei of some cells irrespective of ligand stimulation, but the responsible nuclear localization signal (NLS) has not been previously reported. Here, we report that two histidine residues separated by a 10-amino-acid spacer (H1068-H1079) located in the juxtamembrane region of c-Met function as a putative novel NLS. Deletion of these sequences significantly abolished the nuclear translocation of c-Met, as did substitution of the histidines with alanines. This substitution also decreased the association of c-Met fragment with importin beta. The putative NLS of c-Met is unique in that it relies on histidines, whose positive charge changes depending on pH, rather than the lysines or arginines, commonly found in classical bipartite NLSs, suggesting the possible 'pH-dependency' of this NLS. Indeed, decreasing the cytosolic pH either with nigericin, an Na+/H+ exchanger or pH 6.5 KRB buffer significantly increased the level of nuclear c-Met and the interaction of the c-Met fragment with importin beta, indicating that low pH itself enhanced nuclear translocation. Consistent with this, nigericin treatment also increased the nuclear level of endogenous c-Met in HeLa cells. The putative aberrant bipartite NLS of c-Met seems to be the first example of what we call a 'pH-dependent' NLS.
Active Transport, Cell Nucleus
;
Amino Acid Sequence
;
HeLa Cells
;
Humans
;
Hydrogen-Ion Concentration
;
Molecular Sequence Data
;
*Nuclear Localization Signals
;
Protein Structure, Tertiary
;
Proto-Oncogene Proteins c-met/*analysis/genetics/*metabolism
;
Sequence Deletion
9.Research advances in the Cap gene of circovirus and its encoding capsid protein.
Chinese Journal of Virology 2013;29(4):465-470
The Cap gene of antisense strand of circovirus has the most variation of the genome, and encodes a capsid protein which has the main immunogenicity. The N-terminal of capsid protein makes up of nuclear localization signal which is involved with virus location. This review summarizes the research advance of Cap gene of circovirus in the sequence characteristics, its encoding capsid protein, basic functions of the capsid protein and its interaction with MKRN1 protein, Hsp40 protein, receptor protein gClqR and complement factor C1qB protein. This paper lays a theory foundation for the further study of the capsid protein in the aspects of viral attachment, replication and transportation.
Animals
;
Capsid Proteins
;
genetics
;
immunology
;
metabolism
;
Circoviridae Infections
;
veterinary
;
virology
;
Circovirus
;
genetics
;
immunology
;
Genetic Variation
;
Genome, Viral
;
genetics
;
Nuclear Localization Signals
;
Protein Binding
;
Virus Replication
10.The 2A protease of enterovirus 71 cleaves nup62 to inhibit nuclear transport.
Ya-Zhou ZHANG ; Xing GAN ; Juan SONG ; Peng SUN ; Qin-Qin SONG ; Gong-Qi LI ; Lin-Jun SHENG ; Bao-Dong WANG ; Ming-Zhi LU ; Ling-Min LI ; Jun HAN
Chinese Journal of Virology 2013;29(4):421-425
To study the impact of the enterovirus 71(EV71) on the nuclear transport mechanism,The pGFP-NLS vector with nuclear location signal(NLS) was constructed, RD cells transfected by the pGFP-NLS vector were inoculated with the EV71 or cotransfected by EV71-2A vector. The results showed that GFP protein with NLS was expressed in the cytoplasm due to the inhibition of nuclear transport. In order to further study the mechanism of the EV71 to prevent nuclear transport,Nup62 was detected by Western blotting after RD cells were infected with EV71 or transfected by EV71-2A vector. The results showed that decreased expression of Nup62 could be detected after infection with EV71 and transfection by EV71-2A vector. This study demonstrates that the cleavage of Nup62 by EV71 2A protease may be the mechanism of nuclear transport inhibition.
Active Transport, Cell Nucleus
;
Cell Line, Tumor
;
Cell Nucleus
;
metabolism
;
Enterovirus A, Human
;
enzymology
;
genetics
;
metabolism
;
Enterovirus Infections
;
virology
;
Gene Expression Regulation, Viral
;
Genetic Vectors
;
Green Fluorescent Proteins
;
metabolism
;
Humans
;
Membrane Glycoproteins
;
metabolism
;
Nuclear Localization Signals
;
metabolism
;
Nuclear Pore Complex Proteins
;
metabolism
;
Peptide Hydrolases
;
metabolism
;
Recombinant Fusion Proteins
;
metabolism
;
Transfection

Result Analysis
Print
Save
E-mail