1.Computational Approach for Biosynthetic Engineering of Post-PKS Tailoring Enzymes.
Genomics & Informatics 2008;6(4):227-230
Compounds of polyketide origin possess a wealth of pharmacological effects, including antibacterial, antifungal, antiparasitic, anticancer and immunosuppressive activities. Many of these compounds and their semisynthetic derivatives are used today in the clinic. Most of the gene clusters encoding commercially important drugs have also been cloned and sequenced and their biosynthetic mechanisms studied in great detail. The area of biosynthetic engineering of the enzymes involved in polyketide biosynthesis has recently advanced and been transferred into the industrial arena. In this work, we introduce a computational system to provide the user with a wealth of information that can be utilized for biosynthetic engineering of enzymes involved in post-PKS tailoring steps. Post-PKS tailoring steps are necessary to add functional groups essential for the biological activity and are therefore important in polyketide biosynthesis.
Clone Cells
;
Multigene Family
2.PathTalk: Interpretation of Microarray Gene-Expression Clusters in Association with Biological Pathways.
Tae Su CHUNG ; Hee Joon CHUNG ; Ju Han KIM
Genomics & Informatics 2007;5(3):124-128
Microarray technology enables us to measure the expression of tens of thousands of genes simultaneously under various experimental conditions. Clustering analysis is one of the most successful methods for analyzing microarray data using the assumption that co-expressed genes may be co-regulated. It is important to extract meaningful clusters from a long unordered list of clusters and to evaluate the functional homogeneity and heterogeneity of clusters. Many quality measures for clustering results have been suggested in different conditions. In the present study, we consider biological pathways as a collection of biological knowledge and used them as a reference for measuring the quality of clustering results and functional homogeneities. PathTalk visualizes and evaluates functional relationships between gene clusters and biological pathways.
Cluster Analysis
;
Multigene Family
;
Population Characteristics
;
Transcutaneous Electric Nerve Stimulation
3.Regulation of the Collagen Gene Expression.
Korean Journal of Dermatology 1995;33(6):1005-1013
The genes that codify the subunits of the fibril-forming collagen constitute an evolutionarily related group within the collagen multigene family, Deposition of fibrillar molecules in the extrcellular matrix of several tissues influences a number of cellular activities such as adhesion, proliferation, and migration. In the developing and adult organisms, temporal and spatial expression of collasgen genes is modulated by a variety of cytokines and hormones, Likewise, transcription of collagen genes in tissue cultures can be greatly affected by the action of these substances and by chemical or viral transformation as well. Cytokine-mediated increase of collagen deposition on response to environmental stimuli is also the major histopathological feature of clinically distinct that similarly lead to overt firrotic processes. It is my heartily with to elucidate the mechanisms that regulate tissue specific expression of the human collagen genes a prerequisite for understanding the pathophysiology of diseased processes. Involving collagen metabolism, such as scleroderma.
Adult
;
Collagen*
;
Cytokines
;
Gene Expression*
;
Humans
;
Metabolism
;
Multigene Family
;
Psoriasis
4.Three new polyketides from vasR2 gene over-expressed mutant strain of Verrucosispora sp. NS0172.
Li-Ping DAI ; Wen LI ; Hao-Xin WANG ; Chun-Hua LU
Chinese Journal of Natural Medicines (English Ed.) 2021;19(7):536-539
Over-expression of the pathway specific positive regulator gene is an effective way to activate silent gene cluster. In the curret study, the SARP family regulatory gene, vasR2, was over-expressed in strain Verrucosispora sp. NS0172 and the cryptic gene cluster responsible for the biosynthesis of pentaketide ansamycin was partially activated. Two tetraketides (1 and 2) and a triketide (3) ansamycins, together with five known compounds (4-8), were isolated and elucidated from strain NS0172OEvasR2. Their NMR data were completely assigned by analysis of their HR-ESI-MS and
Micromonosporaceae/metabolism*
;
Multigene Family
;
Polyketides/metabolism*
;
Rifabutin/metabolism*
5.Genome sequencing of Streptomyces aureofaciens DM-1 and analysis of 6-demethylchlortetracycline biosynthesis gene cluster.
Naxin WU ; He HUANG ; Taoling MIN ; Haifeng HU
Chinese Journal of Biotechnology 2020;36(12):2685-2694
Streptomyces aureofaciens DM-1 is a high-yielding 6-demethylchlortetracycline producer. The genome sequencing of DM-1 reveals a linear chromosome containing 6 824 334 bps nucleotides with GC content of 72.6%. In this genome, a total of 6 431 open reading frames were predicted by using glimmer 3.02, Genemark and Z-Curve softwares. Twenty-eight secondary metabolite biosynthetic gene clusters were uncovered by using AntiSMASH gene prediction software, including the complete 6-demethylchlortetracycline biosynthetic gene cluster. A frame-shift mutation in methyltransferase coding region was detected, which may result in the demethylation of chlortetracycline. The complete genome sequence of S. aureofaciens DM-1 provides basic information for functional genomics studies and selection of high-yielding strains for 6-demethylchlortetracycline.
Base Sequence
;
Chlortetracycline
;
Demeclocycline
;
Multigene Family/genetics*
;
Streptomyces aureofaciens/genetics*
6.Improvement of natural product production in Streptomyces by manipulating pathway-specific regulators.
Wan XIONG ; Yanwen DUAN ; Xiaohui YAN ; Yong HUANG
Chinese Journal of Biotechnology 2021;37(6):2127-2146
Streptomyces are major sources of bioactive natural products. Genome sequencing reveals that Streptomyces have great biosynthetic potential, with an average of 20-40 biosynthetic gene clusters each strain. However, most natural products from Streptomyces are produced in low yields under regular laboratory cultivation conditions, which hamper their further study and drug development. The production of natural products in Streptomyces is controlled by the intricate regulation mechanisms. Manipulation of the regulatory systems that govern secondary metabolite production will strongly facilitate the discovery and development of natural products of Streptomyces origin. In this review, we summarize progresses in pathway-specific regulators from Streptomyces in the last five years and highlight their role in improving the yields of corresponding natural products.
Biological Products
;
Multigene Family
;
Secondary Metabolism
;
Streptomyces/genetics*
7.Mining and identification of a biosynthetic gene cluster producing xanthocillin analogues from Penicillium chrysogenum MT-40, an endophytic fungus of Huperzia serrata.
Wenjing WANG ; Beibei ZHANG ; Mingliang ZHANG ; Zekun ZHANG ; Yang WANG ; Xiangyu GE ; Yu DU ; Xiaoxue ZHANG ; Xiao LIU ; Juan WANG ; Xiaohui WANG ; Shepo SHI
Chinese Journal of Biotechnology 2023;39(9):3814-3826
Xanthocillin is a unique natural product with an isonitrile group and shows remarkable antibacterial activity. In this study, the genome of an endophytic fungus Penicillium chrysogenum MT-40 isolated from Huperzia serrata was sequenced, and the gene clusters with the potential to synthesize xanthocillin analogues were mined by local BLAST and various bioinformatics analysis tools. As a result, a biosynthetic gene cluster (named for) responsible for the biosynthesis of xanthocillin analogues was identified by further heterologous expression of the key genes in Aspergillus oryzae NSAR1. Specifically, the ForB catalyzes the synthesis of 2-formamido-3-(4-hydroxyphenyl) acrylic acid, and the ForG catalyzes the dimerization of 2-formamido-3-(4-hydroxyphenyl) acrylic acid to produce the xanthocillin analogue N, N'-(1, 4-bis (4-hydroxyphenyl) buta-1, 3-diene-2, 3-diyl) diformamide. The results reported here provide a reference for further discovery of xanthocillin analogues from fungi.
Penicillium chrysogenum/genetics*
;
Huperzia/microbiology*
;
Acrylates
;
Multigene Family
8.Biosynthesis-based production improvement and structure modification of erythromycin A.
Dandan CHEN ; Jiequn WU ; Wen LIU
Chinese Journal of Biotechnology 2015;31(6):939-954
Erythromycin A is a clinically important macrolide antibiotic with broad-spectrum activity. Its biosynthesis involves the formation of the 14-membered skeleton catalyzed by polyketide synthases, and the modification steps such as hydroxylation, glycosylation and methylation. Based on the understanding of the biosynthetic mechanism, it is reliable to genetically manipulate the erythromycin A-producing strain for production improvement and structure modification. In this paper, we reviewed the progress regarding erythromycin A in high-producing strain construction and chemical structure derivation, to provide insights for further development.
Anti-Bacterial Agents
;
biosynthesis
;
chemistry
;
Erythromycin
;
biosynthesis
;
chemistry
;
Glycosylation
;
Hydroxylation
;
Methylation
;
Multigene Family
;
Polyketide Synthases
;
metabolism
9.Improvement of natamycin production in an industrial strain by heterologous expression of the afsRS(cla) global regulatory genes.
Zhengsheng TAO ; Yemin WANG ; Hualiang ZHENG ; Meifeng TAO
Chinese Journal of Biotechnology 2015;31(5):744-751
The afsRS(cla) global regulatory genes from Streptomyces clavuligerus activate the production of two antibiotics in Streptomyces lividans. In this study, we gained an increase of 38% in the production of natamycin (3.56 g/L) in an industrial strain Streptomyces gilvosporeus TZ1401 through the integration of pHL851 that bears the afsRS(cla) global regulatory genes into its genome. We discovered by quantitive real-time reverse transcription PCR (qRT-PCR) that the expression of 6 genes of the natamycin biosynthetic gene cluster were improved from 1.9 to 2.7 times. This suggests that afsRS(cla) improve the production of natamycin through increased transcription. This study provides a good example for applying afsRS(cla) in high yield breeding of industrial antibiotic producers.
Anti-Bacterial Agents
;
biosynthesis
;
Genes, Regulator
;
Industrial Microbiology
;
Multigene Family
;
Natamycin
;
biosynthesis
;
Streptomyces
;
genetics
10.Genes Involved in the Biosynthesis and Transport of Acinetobactin in Acinetobacter baumannii.
Tarik HASAN ; Chul Hee CHOI ; Man Hwan OH
Genomics & Informatics 2015;13(1):2-6
Pathogenic bacteria survive in iron-limited host environments by using several iron acquisition mechanisms. Acinetobacter baumannii, causing serious infections in compromised patients, produces an iron-chelating molecule, called acinetobactin, which is composed of equimolar quantities of 2,3-dihydroxybenzoic acid (DHBA), L-threonine, and N-hydroxyhistamine, to compete with host cells for iron. Genes that are involved in the production and transport of acinetobactin are clustered within the genome of A. baumannii. A recent study showed that entA, located outside of the acinetobactin gene cluster, plays important roles in the biosynthesis of the acinetobactin precursor DHBA and in bacterial pathogenesis. Therefore, understanding the genes that are associated with the biosynthesis and transport of acinetobactin in the bacterial genome is required. This review is intended to provide a general overview of the genes in the genome of A. baumannii that are required for acinetobactin biosynthesis and transport.
Acinetobacter baumannii*
;
Bacteria
;
Genome
;
Genome, Bacterial
;
Humans
;
Iron
;
Multigene Family
;
Siderophores
;
Threonine