1.Role of miR-663 in acute renal graft rejection: an in vitro study.
Xiao-You LIU ; Jie ZHANG ; Jie LIANG ; Yong-Guang LIU ; Jian-Min HU ; Zheng-Yao JIANG ; Ze-Feng GUO
Journal of Southern Medical University 2016;36(3):419-422
OBJECTIVETo compare the serum miR-663 levels in renal transplant patients with and without acute rejection (AR) and explore the role of miR-663 acute renal graft rejection.
METHODSReal time-PCR was used to determine serum miR-663 levels in renal transplant recipients with and without AR. MTT assay and Annexin V-FITC assay were employed to examine the viability and apoptosis of human renal glomerular endothelial cells (HRGEC) treated with a miR-663 mimic or a miR-663 inhibitor, and ELISA was performed to detect the expression of inflammation-related cytokines including IL-6, IFN-γ, CCL-2 and TNF-α in the cells. Transwell assay was used to examine the effect of miR-663 mimic and miR-663 inhibitor on the chemotactic capability of macrophages.
RESULTSSerum miR-663 level was significantly higher in renal transplant recipients with AR than in those without AR. The miR-663 mimic significantly inhibited the viability of HRGECs and increase the cell apoptosis rate, while miR-663 inhibitor suppressed the cell apoptosis. The miR-663 mimic increased the expression levels of inflammation-related cytokines and enhanced the chemotactic capability of macrophages.
CONCLUSIONmiR-663 might play important roles in acute renal graft rejection and may become a therapeutic target for treating AR.
Apoptosis ; Cells, Cultured ; Cytokines ; metabolism ; Endothelial Cells ; cytology ; Graft Rejection ; blood ; Humans ; Kidney Glomerulus ; cytology ; Kidney Transplantation ; Macrophages ; cytology ; drug effects ; MicroRNAs ; blood
2.Adriamycin increases podocyte permeability: evidence and molecular mechanism.
Xiaozhong LI ; Haitao YUAN ; Xueguang ZHANG
Chinese Medical Journal 2003;116(12):1831-1835
OBJECTIVETo investigate the increased podocyte permeability by evidence of adriamycin (AD) and its molecular mechanism.
METHODSIn this study, we explored the direct effects of AD on cultured mouse podocytes and the potential protection effects of Dexamethasome (Dex).
RESULTSAfter 24-hour AD (5 x 10(-7) mol/L) treatment, albumin passage through podocyte monolayers was increased by 2.27-fold (P < 0.01). AD caused a 62% decrease in Zonula Occluden-1 (ZO-1) protein (P < 0.05), suggesting that AD might increase podocyte permeability by disrupting tight junctions. Dex (1 x 10(-6) mol/L), co-administered with AD, protected podocytes from AD-induced increased albumin passage. This may be linked with an increased P-cadherin protein level to 1.93 fold of control (P < 0.01).
CONCLUSIONSAD has a direct, detrimental effect on podocyte permeability, probably through disrupting tight junctions; Dex could protect against AD-induced high podocyte permeability by upregulating adherent protein P-cadherin.
Albumins ; metabolism ; Animals ; Cadherins ; analysis ; Cell Membrane Permeability ; drug effects ; Cells, Cultured ; Dexamethasone ; pharmacology ; Doxorubicin ; pharmacology ; Epithelial Cells ; drug effects ; Kidney Glomerulus ; cytology ; drug effects ; Mice
3.Effect of Modified Hangqi Chifeng Decoction Containing Serum on the Expression of Col IV, MMP-2, and TIMP-2 in Glomerular Mesangial Cells Induced by LPS.
Hong-xia LIU ; Yu ZHANG ; Peng LI ; Yan-hong GAO ; Shuang LI ; Zi-kai YU
Chinese Journal of Integrated Traditional and Western Medicine 2016;36(5):592-596
OBJECTIVETo explore the effect of Modified Hangqi Chifeng Decoction (MHCD) on levels of collagen type IV (Col IV), matrix metalloproteinase-2 (MMP-2), tissue inhibitor of metalloproteinase-2 (TIMP-2) in extracellular matrix (ECM) of glomerular mesangial cells (GMCs) in LPS induced mice.
METHODSNormal serum and telmisartan, high, medium, low dose MHCD containing serums were prepared by using serum pharmacology method. GMCs were cultured in vitro. The proliferation of mesangial cells were induced using LPS as stimulating factor. GMCs were divided into six groups, i.e., the normal group, the model group, the telmisartan group, high, medium and low dose MHCD groups. Col IV content in the supernatant of mesangial cells was detected using ELISA. Protein expressions of MMP-2 and TIMP-2 were detected using Western blot.
RESULTSCompared with the normal group, Col IV content obviously increased in the model group after 72-h LPS stimulation; protein expressions of MMP-2 and TIMP-2 were obviously up-regulated, and MMP-2/TIMP-2 ratio was down-regulated in the model group (P < 0.01). Compared with the model group, Col IV content obviously decreased in high and medium dose MHCD groups and the telmisartan group (P < 0.01); protein expressions of MMP-2 were obviously down-regulated in medium and low dose MHCD groups (P < 0.01, P < 0.05); the protein expression of TIMP-2 was obviously down-regulated in high, medium, low dose MHCD groups and the telmisartan group (P < 0.01). The pro- tein expression of TIMP-2 was obviously lower in the high dose MHCD group than in the low dose MHCD group (P < 0.01). MMP-2/TIMP-2 ratio was obviously up-regulated in the telmisartan group, high and medium dose MHCD groups (P < 0.01).
CONCLUSIONMHCD could regulate disordered MMP-2/TIMP-2 ratio in LPS induced ECM, inhibit excessive production of Col IV in ECM, promote the degradation of ECM, reduce the accumulation of ECM, thereby, delaying the process of glomerular sclerosis.
Animals ; Cells, Cultured ; Collagen Type IV ; metabolism ; Extracellular Matrix ; metabolism ; Kidney Glomerulus ; cytology ; Matrix Metalloproteinase 2 ; metabolism ; Mesangial Cells ; drug effects ; Mice ; RNA, Messenger ; metabolism ; Tissue Inhibitor of Metalloproteinase-2 ; metabolism
4.Effect of Wenyang Huoxue Lishul Recipe Containing Serum on Expression of Cathepsin L in Puromycin Aminonucleoside-induced Injury of Mouse Glomerular Podocytes.
Wen-wen QIU ; Jun YUAN ; Liu YANG
Chinese Journal of Integrated Traditional and Western Medicine 2016;36(5):602-607
OBJECTIVETo observe the effect of Wenyang Huoxue Lishui Recipe (WHLR) containing serum on the expression of cathepsin L (CatL) in puromycin aminonucleoside-induced injury of mouse glomerular podocytes.
METHODSMouse podocyte cells (MPCs) in vitro cultured were divided into the normal control group, the model group, the dexamethasone (DEX) group, 10% WHLR containing serum group, 20% WHLR containing serum group, the vehicle serum control group. MPCs in the normal control group were cultured at 37 degrees C culture solution for 24 h. 45 mg/L puromycin was acted on MPCs in the model group for 24 h. On the basis of puromycin intervention, 1 limol/L DEX was co-incubated in MPCs of the DEX group for 24 h; 10% or 20% WHLR containing serum was co-incubated in MPCs of the 10% WHLR containing serum group and 20% WHLR containing serum group for 24 h. The vehicle serum control group was also set up by incubating with WHLR containing serum alone for 24 h. The expression of CatL and its substrate Synaptopodin in podocytes were detected by cell immunofluorescence staining. FITC-conjugated phalloidin was used to stain F-actin. A cortical F-actin score index (CFS index) was designed to quantify the degree of cytoskeletal reorganization in cultured podocytes.
RESULTSCompared with the normal control group, the expression of synaptopodin significantly decreased and the expression of CatL significantly-increased in the model group. F-actin arranged in disorder, gradually forming pericellular F-actin ring. CFS index was obviously elevated (P < 0.01). Compared with the model group, the epression of synaptopodin increased, the expression of CatL decreased, and CFS index also decreased in the DEX group, 10% WHLR containing serum group, and 20% WHLR containing serum group (P < 0.05, P < 0.01). Compared with the DEX group, the expression of synaptopodin decreased in 10% WHLR containing serum group, CFS index also decreased in 20% WHLR containing serum group (P < 0.05).
CONCLUSIONSWHLR could up-regulate the expression of synaptopodin, down-regulate the expression of CatL, and alleviate cytoskeletal reorganization of F-actin. It was helpful to stabilize the cytoskeleton of F-actin and improve the merging of podocytes.
Actins ; metabolism ; Animals ; Cathepsin L ; metabolism ; Cells, Cultured ; Down-Regulation ; Drugs, Chinese Herbal ; pharmacology ; Kidney Glomerulus ; cytology ; Mice ; Microfilament Proteins ; metabolism ; Podocytes ; drug effects ; pathology ; Puromycin Aminonucleoside ; adverse effects ; Up-Regulation
5.Regulation of Glomerular Endothelial Cell Proteoglycans by Glucose.
Tae Sun HA ; Senthil DURAISAMY ; Jennifer L FAULKNER ; Balakuntalam S KASINATH
Journal of Korean Medical Science 2004;19(2):245-252
The presence of heparan sulfate proteoglycan (HSPG) in anionic sites in the lamina rara interna of glomerular basement membrane suggests that the proteoglycan may be deposited by the glomerular endothelial cells (GEndo). We have previously demonstrated that bovine GEndo in vitro synthesize perlecan, a species of glomerular basement membrane HSPG. In this study we examined whether high glucose medium regulates the GEndo metabolism of glycopeptides including perlecan. Metabolic labeling of glycoconjugates with 35S-SO4, sequential ion exchange and Sepharose CL-4B chromatography of labeled glycoconjugates, and northern analysis were performed. Incubation of GEndo for 8 to 14 weeks (but not for 1-2 weeks) in medium containing 30 mM glucose resulted in nearly 50% reduction in the synthesis of cell layer and medium 35SO4-labeled low anionic glycoproteins and proteoglycans, including that of basement membrane HSPG (Kav 0.42) compared to GEndo grown in 5 mM glucose medium; no changes in anionic charge density or hydrodynamic size of proteoglycans were noted. Northern analysis demonstrated that the mRNA abundance of perlecan was reduced by 47% in cells incubated with 30 mM glucose. Our data suggest that high glucose medium reduces the GEndo synthesis of perlecan by regulating its gene expression. Reduced synthesis of perlecan by GEndo may contribute to proteinuria seen in diabetic nephropathy.
Animals
;
Basement Membrane/drug effects/metabolism
;
Cattle
;
Cells, Cultured
;
Diabetic Nephropathies/metabolism
;
Endothelial Cells/cytology/*drug effects/*metabolism
;
Gene Expression/drug effects
;
Glucose/*pharmacology
;
Heparan Sulfate Proteoglycan/genetics/*metabolism
;
Kidney Glomerulus/*cytology
;
Sulfur Radioisotopes/diagnostic use
;
Support, Non-U.S. Gov't
;
Support, U.S. Gov't, Non-P.H.S.
;
Support, U.S. Gov't, P.H.S.
6.Effects of adriamycin on cultured mouse podocytes VEGF expressions and the potential protective effects of dexamethasone.
Xiao-zhong LI ; Hai-tao YUAN ; Xue-guang ZHANG
Chinese Journal of Pediatrics 2003;41(2):146-146
Animals
;
Antibiotics, Antineoplastic
;
pharmacology
;
Blotting, Northern
;
Cells, Cultured
;
Dexamethasone
;
pharmacology
;
Doxorubicin
;
pharmacology
;
Enzyme-Linked Immunosorbent Assay
;
Gene Expression Regulation
;
drug effects
;
Glucocorticoids
;
pharmacology
;
Kidney Glomerulus
;
cytology
;
drug effects
;
metabolism
;
Mice
;
RNA, Messenger
;
drug effects
;
genetics
;
metabolism
;
Vascular Endothelial Growth Factor A
;
genetics
;
metabolism
7.Angiotensin II receptor blocker attenuates overexpression of vascular endothelial growth factor in diabetic podocytes.
Eun Young LEE ; Myung Sook SHIM ; Mi Jin KIM ; Sae Yong HONG ; Young Goo SHIN ; Choon Hee CHUNG
Experimental & Molecular Medicine 2004;36(1):65-70
VEGF expressed in glomerular podocytes, is known to increase vascular permeability to macromolecules. Angiotensin II can stimulate the release of VEGF, and the protective effects of angiotensin II antagonist against diabetic glomerular injury suggest that the angiotensin II-induced VEGF is an important pathogenetic mechanism in the development of proteinuria during diabetic nephropathy although this mechanism is not fully understood. In this study, the changes of VEGF expression was examined in the experimental diabetic nephropathy to determine whether these changes were modified by renoprotective intervention by blockers of angiotensin II receptors. The streptozotocin- induced diabetic rats were treated with L-158,809, a blocker of angiotensin II receptors, for 12 weeks. Age-matched rats with L-158,809 served as controls. RT-PCR and immunohistochemistry were used to assess and quantify gene and protein expression of VEGF. A progressive increase in urinary protein excretion was observed in diabetic rats. Glomerular VEGF expression was significantly higher in diabetic rats than in the control groups, with a significant reduction in glomerular VEGF expression and proteinuria in L-158,809- treated diabetic rats. VEGF mRNA was also significantly higher in diabetic kidneys than in the control groups, with a significant reduction in VEGF mRNA in L-158,809-treated diabetic kidneys. These results demonstrates that VEGF expression is significantly increased in diabetic podocytes, and angiotensin II receptor antagonist attenuated these changes in VEGF expression and prevented the development of proteinuria in vivo. Attenuation of increased VEGF expression in podocytes could contribute to the renoprotective effects of angiotensin II receptor antagonists in diabetic nephropathy.
Angiotensin II/*antagonists & inhibitors
;
Animals
;
Antihypertensive Agents/metabolism/pharmacology
;
Blood Glucose/metabolism
;
Diabetes Mellitus, Experimental/*metabolism
;
Humans
;
Imidazoles/metabolism/*pharmacology
;
*Kidney Glomerulus/cytology/drug effects/metabolism
;
Male
;
RNA, Messenger/metabolism
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Angiotensin/*metabolism
;
Research Support, Non-U.S. Gov't
;
Tetrazoles/metabolism/*pharmacology
;
Vascular Endothelial Growth Factor A/genetics/*metabolism
8.Expression and Regulation of Latent TGF-beta Binding Protein-1 Transcripts and Their Splice Variants in Human Glomerular Endothelial Cells.
Joon Hyeok KWAK ; Ji Su WOO ; Kunyoo SHIN ; Hee Joon KIM ; Hoe Su JEONG ; Dong Cheol HAN ; Sung Il KIM ; Choon Sik PARK
Journal of Korean Medical Science 2005;20(4):628-635
Latent transforming growth factor (TGF)-beta-binding protein (LTBP) is required for the assembly, secretion, matrix association, and activation of latent TGF-beta complex. To elucidate the cell specific expression of the genes of LTBP-1 and their splice variants and the factors that regulate the gene expression, we cultured primary human glomerular endothelial cells (HGEC) under different conditions. Basal expression of LTBP-1 mRNA was suppressed in HGEC compared to WI-38 human embryonic lung fibroblasts. High glucose, H2O2, and TGF-beta1 upregulated and vascular endothelial growth factor (VEGF) further downregulated LTBP-1 mRNA in HGEC. RT-PCR with a primer set for LTBP-1S produced many clones but no clone was gained with a primer set for LTBP-1L. Of 12 clones selected randomly, Sca I mapping and DNA sequencing revealed that only one was LTBP-1S and all the others were LTBP-1S delta 53. TGF-beta1, but not high glucose, H2O2 or VEGF, tended to increase LTBP-1S delta 53 mRNA. In conclusion, HGEC express LTBP-1 mRNA which is suppressed at basal state but upregulated by high glucose, H2O2, and TGF-beta1 and downregulated by VEGF. Major splice variant of LTBP-1 in HGEC was LTBP-1S delta 53. Modification of LTBP-1S delta 53 gene in HGEC may abrogate fibrotic action of TGF-beta1 but this requires confirmation.
*Alternative Splicing
;
Amino Acid Sequence
;
Cell Line
;
Cells, Cultured
;
Cloning, Molecular
;
Comparative Study
;
Endothelial Cells/drug effects/*metabolism
;
*Gene Expression Regulation
;
Glucose/pharmacology
;
Humans
;
Hydrogen Peroxide/pharmacology
;
Intracellular Signaling Peptides and Proteins/*genetics
;
Kidney Glomerulus/cytology
;
Protein Isoforms/genetics
;
RNA, Messenger/genetics/metabolism
;
Research Support, Non-U.S. Gov't
;
Reverse Transcriptase Polymerase Chain Reaction
;
*Transcription, Genetic
;
Transfection
;
Transforming Growth Factor beta/pharmacology
;
Vascular Endothelial Growth Factor A/pharmacology