1.Post-GWAS Strategies.
Genomics & Informatics 2011;9(1):1-4
Genome-wide association (GWA) studies are the method of choice for discovering loci associated with common diseases. More than a thousand GWA studies have reported successful identification of statistically significant association signals in human genomes for a variety of complex diseases. In this review, I discuss some of the issues related to the future of GWA studies and their biomedical applications.
Genome, Human
;
Genome-Wide Association Study
;
Humans
2.Genome-Wide Association Study in Psychiatric Disorders.
Journal of Korean Neuropsychiatric Association 2011;50(1):20-38
Most psychiatric disorders are some kinds of complex genetic traits. Identifying the causal genes of psychiatric disorders has been challenging. Through recent revolutionary advances, such as the HapMap Project and the development of high-throughput genotyping chips, the genome-wide association study (GWAS) has recently become possible and is now in the spotlight in psychiatric genetics. In this article, we reviewed the concepts, rationale, designs and general steps of GWAS, and also introduced a few previous GWAS of several psychiatric disorders.
Genome-Wide Association Study
;
HapMap Project
3.Genome-Wide Association Study in Psychiatric Disorders.
Journal of Korean Neuropsychiatric Association 2011;50(1):20-38
Most psychiatric disorders are some kinds of complex genetic traits. Identifying the causal genes of psychiatric disorders has been challenging. Through recent revolutionary advances, such as the HapMap Project and the development of high-throughput genotyping chips, the genome-wide association study (GWAS) has recently become possible and is now in the spotlight in psychiatric genetics. In this article, we reviewed the concepts, rationale, designs and general steps of GWAS, and also introduced a few previous GWAS of several psychiatric disorders.
Genome-Wide Association Study
;
HapMap Project
5.Genome-wide Association Studies for Osteoporosis: A 2013 Update.
Yong Jun LIU ; Lei ZHANG ; Christopher J PAPASIAN ; Hong Wen DENG
Journal of Bone Metabolism 2014;21(2):99-116
In the past few years, the bone field has witnessed great advances in genome-wide association studies (GWASs) of osteoporosis, with a number of promising genes identified. In particular, meta-analysis of GWASs, aimed at increasing the power of studies by combining the results from different study populations, have led to the identification of novel associations that would not otherwise have been identified in individual GWASs. Recently, the first whole genome sequencing study for osteoporosis and fractures was published, reporting a novel rare nonsense mutation. This review summarizes the important and representative findings published by December 2013. Comments are made on the notable findings and representative studies for their potential influence and implications on our present understanding of the genetics of osteoporosis. Potential limitations of GWASs and their meta-analyses are evaluated, with an emphasis on understanding the reasons for inconsistent results between different studies and clarification of misinterpretation of GWAS meta-analysis results. Implications and challenges of GWAS are also discussed, including the need for multi- and inter-disciplinary studies.
Codon, Nonsense
;
Genetics
;
Genome
;
Genome-Wide Association Study*
;
Osteoporosis*
7.Response: Genome-Wide Association Study Identifies Two Novel Loci with Sex-Specific Effects for Type 2 Diabetes Mellitus and Glycemic Traits in a Korean Population (Diabetes Metab J 2014;38:375-87).
Diabetes & Metabolism Journal 2014;38(6):487-488
No abstract available.
Diabetes Mellitus, Type 2*
;
Genome-Wide Association Study*
8.Letter: Genome-Wide Association Study Identifies Two Novel Loci with Sex-Specific Effects for Type 2 Diabetes Mellitus and Glycemic Traits in a Korean Population (Diabetes Metab J 2014;38:375-87).
Diabetes & Metabolism Journal 2014;38(6):484-486
No abstract available.
Diabetes Mellitus, Type 2*
;
Genome-Wide Association Study*