1.Generation of genetic modified pigs devoid of GGTA1 and expressing the human leukocyte antigen-G5.
Xiaoqing ZHOU ; Yu LIU ; Chengcheng TANG ; Lingyin CHENG ; Shuwen ZHENG ; Yuling ZHENG ; Min CHEN ; Huaqiang YANG ; Qingjian ZOU ; Liangxue LAI
Chinese Journal of Biotechnology 2022;38(3):1096-1111
Pigs are considered as ideal donors for xenotransplantation because they have many physiological and anatomical characteristics similar to human beings. However, antibody-mediated immunity, which includes both natural and induced antibody responses, is a major challenge for the success of pig-to-primate xenotransplantation. Various genetic modification methods help to tailor pigs to be appropriate donors for xenotransplantation. In this study, we applied transcription activator-like effector nuclease (TALEN) to knock out the porcine α-1, 3-galactosyltransferase gene GGTA1, which encodes Gal epitopes that induce hyperacute immune rejection in pig-to-human xenotransplantation. Meanwhile, human leukocyte antigen-G5 gene HLA-G5, which acts as an immunosuppressive factor, was co-transfected with TALEN into porcine fetal fibroblasts. The cell colonies of GGTA1 biallelic knockout with positive transgene for HLA-G5 were chosen as nuclear donors to generate genetic modified piglets through a single round of somatic cell nuclear transfer. As a result, we successfully obtained 20 modified piglets that were positive for GGTA1 knockout (GTKO) and half of them expressed the HLA-G5 protein. Gal epitopes on the cell membrane of GTKO/HLA-G5 piglets were completely absent. Western blotting and immunofluorescence showed that HLA-G5 was expressed in the modified piglets. Functionally, the fibroblasts from the GTKO/HLA-G5 piglets showed enhanced resistance to complement-mediated lysis ability compared with those from GTKO-only or wild-type pigs. These results indicate that the GTKO/HLA-G5 pigs could be a valuable donor model to facilitate laboratory studies and clinics for xenotransplantation.
Animals
;
Animals, Genetically Modified
;
Gene Knockout Techniques
;
HLA Antigens
;
Humans
;
Nuclear Transfer Techniques
;
Swine
;
Transplantation, Heterologous
2.Transgenesis for pig models.
Soo Young YUM ; Ki Young YOON ; Choong Il LEE ; Byeong Chun LEE ; Goo JANG
Journal of Veterinary Science 2016;17(3):261-268
Animal models, particularly pigs, have come to play an important role in translational biomedical research. There have been many pig models with genetically modifications via somatic cell nuclear transfer (SCNT). However, because most transgenic pigs have been produced by random integration to date, the necessity for more exact gene-mutated models using recombinase based conditional gene expression like mice has been raised. Currently, advanced genome-editing technologies enable us to generate specific gene-deleted and -inserted pig models. In the future, the development of pig models with gene editing technologies could be a valuable resource for biomedical research.
Animals
;
Gene Expression
;
Gene Transfer Techniques*
;
Mice
;
Models, Animal
;
Recombinases
;
Swine
3.Preparation of luciferase-expressing mRNA and expression characteristics of mRNA delivered by electroporation in vivo.
Lingjiang FAN ; Keru ZHOU ; Yanguang LIU ; Guiqin WANG ; Ting SHI ; Yihong HU ; Daixi LI
Chinese Journal of Biotechnology 2022;38(9):3379-3389
In this study, we aimed to construct a non-replication mRNA platform and explore the side effects of electroporation-mediated delivery of mRNA on the mice as well as the expression features of the mRNA. With luciferase gene as a marker, in vitro transcription with T7 RNA polymerase was carried out for the synthesis of luciferase-expressed mRNA, followed by enzymatic capping and tailing. The mRNA was delivered in vivo by electroporation via an in vivo gene delivery system, and the expression intensity and duration of luciferase in mice were observed via an in vivo imaging system. The results demonstrated that the mRNA transcripts were successfully expressed both in vitro and in vivo. The electroporation-mediated delivery of mRNA had no obvious side effects on the mice. Luciferase was expressed successfully in all the mRNA-transduced mice, while the expression intensity and duration varied among individuals. Overall, the expression level peaked on the first day after electroporation and rapidly declined on the fourth day. This study is of great importance for the construction of non-replication mRNAs and their application in vaccine or antitumor drug development.
Animals
;
Electroporation/methods*
;
Gene Transfer Techniques
;
Luciferases/metabolism*
;
Mice
;
RNA, Messenger/genetics*
4.Alzheimer's disease and nerve growth factor gene therapy.
Zhonghua HUANG ; Jian LI ; Jun ZHOU ; Jie ZHANG
Journal of Central South University(Medical Sciences) 2019;44(12):1413-1418
Gene therapy plays an important role in Alzheimer's disease (AD). In recent years, the research on gene delivery vector has gradually transferred from adenovirus vector, adeno-associated virus vector and lentivirus vector to liposomes and nanomaterial carrier systems. Graphene, the newest member of nanomaterial carrier system, has attracted extensive attention for its well permeability and biocompatibility. The methods of gene therapy can be divided into direct and indirect method. The stem cell therapy, which is the most-well studied one, belongs to the indirect method. In the gene therapy of AD, the selection of appropriate carrier and method will determine the therapeutic effect.
Alzheimer Disease
;
therapy
;
Dependovirus
;
Gene Transfer Techniques
;
Genetic Therapy
;
Genetic Vectors
;
Humans
5.Current status and prospects of non-viral vector in inner ear gene therapy.
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2013;27(23):1339-1342
So far, there is no effective treatment for most of patients with sensorineural hearing loss. Many studies have shown that gene therapy has become more promising in terms of protecting the inner ear from these diseases. In recent years, inner ear gene therapy has become a research focus in the field of otology. It has not yet appeared a feasible technique for inner ear gene therapy in clinical application due to the particularity of the structure and function of inner ear. On the other hand, in order to avoid the adverse effects of carcinogenic and immunity caused by viral vectors, many scholars devote themselves to develop new gene vectors based on non-viral materials, such as liposomes, polymers and other nanomaterials. In recent years, many great progresses have been made in development and application of non-viral vectors, which showing an inspiring prospect. The research status, progress and prospects of non-viral vectors in inner ear gene therapy will be discussed in this review.
Animals
;
Ear, Inner
;
Gene Transfer Techniques
;
Genetic Therapy
;
Genetic Vectors
;
Humans
6.Genetically Engineered Mouse Models for Drug Development and Preclinical Trials.
Biomolecules & Therapeutics 2014;22(4):267-274
Drug development and preclinical trials are challenging processes and more than 80% to 90% of drug candidates fail to gain approval from the United States Food and Drug Administration. Predictive and efficient tools are required to discover high quality targets and increase the probability of success in the process of new drug development. One such solution to the challenges faced in the development of new drugs and combination therapies is the use of low-cost and experimentally manageable in vivo animal models. Since the 1980's, scientists have been able to genetically modify the mouse genome by removing or replacing a specific gene, which has improved the identification and validation of target genes of interest. Now genetically engineered mouse models (GEMMs) are widely used and have proved to be a powerful tool in drug discovery processes. This review particularly covers recent fascinating technologies for drug discovery and preclinical trials, targeted transgenesis and RNAi mouse, including application and combination of inducible system. Improvements in technologies and the development of new GEMMs are expected to guide future applications of these models to drug discovery and preclinical trials.
Animals
;
Drug Discovery
;
Gene Transfer Techniques
;
Genome
;
Mice*
;
Models, Animal
;
United States Food and Drug Administration
7.Preparation and performance of Chitosan-oligosaccharides/DNA complex nanoparticles.
Jun-Lü QIAN ; Rong-Rong ZHU ; Jin HUANG ; Shi-Long WANG ; Xiao-Yu SUN
Chinese Journal of Biotechnology 2007;23(4):741-745
Comparing to Chitosan, Chitosan-oligosaccharides have several special functions, such as water-soluble, antitumor activity, immunostimulating effects, and antimicrobial activity. The chitosan-oligosaccharide, the molecular weight of which was about 5000, was used as research model. According to the agarose gel electrophoresis and UV spectrophotometer it was proved that electrostatic interaction was playing a very important role in the formation process of chitosan-oligosaccharide/DNA complex. The potential of adsorbing DNA on chitosan-oligosaccharide was analyzed by gel electrophoresis and UV spectrophotometer, and it was indicated that chitosan-oligosaccharide can improve the storage and structure stability of DNA. To check its protection ability to DNA by DNase I digestive experiment, the result showed that chitosan-oligosaccharide could load with plasmid effectively and protect DNA from being digested by DNase I. It was proved that chitosan-oligosacchide was safe and effective for gene delivery and will have a very good future in the field of gene therapy.
Chitosan
;
chemistry
;
DNA
;
chemistry
;
Gene Transfer Techniques
;
Genetic Vectors
;
Nanoparticles
;
chemistry
;
Oligosaccharides
;
chemistry
8.The strategies of endosomal escape for intracellular gene delivery.
Wen-Xi WANG ; Kai DAI ; Lu HONG ; Ting CAI ; Lan TANG
Acta Pharmaceutica Sinica 2014;49(8):1111-1116
The intracellular trafficking and subcellular distribution of exogenous gene is very important for gene delivery. A successful gene vehicle should overcome various barriers including endosomal membrane barriers to delivery gene to the target organelle. Traditional nonviral vehicle is unable to avoid endosomal pathway efficiently, so the efficiency of gene delivery is low and the application of gene drugs is limited. In order to achieve efficient nonviral gene delivery, a lot of researches based on endosomal escape have been carried out and some agents with the function of endsomal escape have been found. These agents facilitate the endsomal escape via various mechanisms, such as fusion into the lipid bilayer of endosomes, pore formation in the endosomal membrane, proton sponge effect and photochemical methods to rupture the endosomal membrane. In this review, various reported strategies for endsomal escape are described according to the escape mechanisms, and their applications in intracellular gene delivery are also discussed.
Cell Membrane
;
metabolism
;
Endosomes
;
metabolism
;
Gene Transfer Techniques
;
Genetic Therapy
;
Genetic Vectors
;
Humans
9.Gaussia luciferase reporter assay for assessment of gene delivery systems in vivo.
Feng CHEN ; Zhen XU ; Jiang LU ; Xiang LÜ ; Wen-li MU ; Ya-jun WANG ; De-pei LIU ; Chih-chuan LIANG
Chinese Medical Sciences Journal 2010;25(2):95-99
OBJECTIVETo develop an alternative method for assessment of gene delivery systems in vivo.
METHODSMouse primary spleen lymphocytes were genetically modified in vitro by a retroviral vector harboring a Gaussia luciferase (Gluc) expression cassette. After implantation of these cells into recipient mice, the expression of Gluc was detected in whole blood or plasma collected.
RESULTSAs little as 10 muL whole blood drawn from the recipient mice could guarantee prompt reading of Gluc activity with a luminometer. And the reading was found in good correlation with the number of genetically modified spleen lymphocytes implanted to the mice.
CONCLUSIONSGluc may be useful as an in vivo reporter for gene therapy researches, and Gluc blood assay could provide an alternative method for assessment of gene delivery systems in vivo.
Animals ; Arecaceae ; enzymology ; Cell Line ; Gene Transfer Techniques ; Genes, Reporter ; Humans ; Luciferases ; genetics ; Mice
10.Surface modification and DNA-binding assessment of nano-hydroxyapatite.
Xiong-hui WU ; Hong SUN ; Xiao-wei XING ; Li-hua HUANG ; Su-ping HUANG
Journal of Southern Medical University 2010;30(10):2233-2241
OBJECTIVETo evaluate the impact of surface modification on the DNA-binding ability of nano-hydroxyapatite (nHA).
METHODSChemical co-precipitation-hydrothermal synthesis was utilized to prepare the nHA particles, and polyethylenimine (PEI) was used for surface modification of the nHA. Transmission electron microscopic (TEM) observation and zeta potential detection of the nHA were carried out before and after surface modification. The abilities of the nanoparticles, at different pH values and different concentrations, for DNA-binding and DNA protection against nuclease digestion were assessed before and after surface modification by electrophoresis.
RESULTSTEM observation showed a short rod-like morphology of PEI-modified nHA with uniform particle size and good dispersion; the nHA without the modification tended to aggregate with poor dispersion. With a positive zeta potential, the PEI-modified nHA showed an obviously enhanced ability of DNA binding at different pH values and concentrations, with strong capacity to protect the DNA against Dnase I digestion. At the concentration of 250 µg/ml and a pH value of 7.0, the nHA-PEI showed an optimal efficiency of DNA-binding and DNA protection.
CONCLUSIONnHA with surface modification by PEI can serve as an effective vector for DNA binding and transfer.
Amino Acid Motifs ; DNA ; chemistry ; Durapatite ; chemistry ; Gene Transfer Techniques ; Genetic Vectors ; Nanoparticles ; chemistry ; Polyethyleneimine ; chemistry