1.Metabolic reprogramming by glutathione S-transferase enhances environmental adaptation of Streptococcus mutans.
Haoyue ZHENG ; Xian PENG ; Jing ZOU
West China Journal of Stomatology 2025;43(5):728-735
OBJECTIVES:
This study aims to investigate the impact of glutathione S-transferase (GST) on the environmental adaptability of Streptococcus mutans (S. mutans).
METHODS:
A GST knockout strain ΔgsT was constructed. Transcriptomic sequencing was performed to analyze the gene expression differences between the wild-type S. mutans UA159 and its GST knockout strain ΔgsT. Comprehensive functional assessments, including acid tolerance assays, hydrogen peroxide challenge assays, nutrient limitation growth assays, and fluorescence in situ hybridization, were conducted to evaluate the acid tolerance, antioxidant stress resistance, growth kinetics, and interspecies competitive ability of ΔgsT within plaque biofilms.
RESULTS:
Compared with the wild-type S. mutans, 198 genes in ΔgsT were significantly differentially expressed and enriched in pathways related to metabolism, stress response, and energy homeostasis. The survival rate of ΔgsT in acid tolerance assays was markedly reduced (P<0.01). After 15 min of hydrogen peroxide challenge, the survival rate of ΔgsT decreased to 38.12% (wild type, 71.75%). Under nutrient-limiting conditions, ΔgsT exhibited a significantly lower final OD600 value than the wild-type strain (P<0.05). In the biofilm competition assays, the proportion of S. mutans ΔgsT in the mixed biofilm (8.50%) was significantly lower than that of the wild type (16.89%) (P<0.05).
CONCLUSIONS
GST enhances the acid resistance, oxidative stress tolerance, and nutrient adaptation of S. mutans by regulating metabolism-related and stress response-related genes.
Streptococcus mutans/enzymology*
;
Biofilms
;
Glutathione Transferase/physiology*
;
Adaptation, Physiological
;
Hydrogen Peroxide/pharmacology*
;
Gene Expression Regulation, Bacterial
;
Oxidative Stress
;
Metabolic Reprogramming
2.Construction and optimization of 1, 4-butanediamine biosensor based on transcriptional regulator PuuR.
Junjie LIU ; Minmin JIANG ; Tong SUN ; Xiangxiang SUN ; Yongcan ZHAO ; Mingxia GU ; Fuping LU ; Ming LI
Chinese Journal of Biotechnology 2025;41(1):437-447
Biosensors have become powerful tools for real-time monitoring of specific small molecules and precise control of gene expression in biological systems. High-throughput sensors for 1, 4-butanediamine biosynthesis can greatly improve the screening efficiency of high-yielding 1, 4-butanediamine strains. However, the strategies for adapting the characteristics of biosensors are still rarely studied, which limits the applicability of 1, 4-butanediamine biosensors. In this paper, we propose the development of a 1, 4-butanediamine biosensor based on the transcriptional regulator PuuR, whose homologous operator puuO is installed in the constitutive promoter PgapA of Escherichia coli to control the expression of the downstream superfolder green fluorescent protein (sfGFP) as the reporter protein. Finally, the biosensor showed a stable linear relationship between the GFP/OD600 value and the concentration of 1, 4-butanediamine when the concentration of 1, 4-butanediamine was 0-50 mmol/L. The promoters with different strengths in the E. coli genome were used to modify the 1, 4-butanediamine biosensor, and the functional properties of the PuuR-based 1, 4-butanediamine biosensor were explored and improved, which laid the groundwork for high-throughput screening of engineered strains highly producing 1, 4-butanediamine.
Biosensing Techniques/methods*
;
Escherichia coli/metabolism*
;
Promoter Regions, Genetic/genetics*
;
Green Fluorescent Proteins/metabolism*
;
Transcription Factors/genetics*
;
Escherichia coli Proteins/genetics*
;
Diamines/metabolism*
;
Gene Expression Regulation, Bacterial
3.Regulatory role of SoxR in Citrobacter braakii JPG1 in physiological response to aerobic/anaerobic-menadione stress.
Qiao XU ; Lei GAO ; Shenglei CHEN ; Yini ZHANG ; Xiaoyu WANG
Chinese Journal of Biotechnology 2025;41(4):1621-1630
SoxR, one of bacterial transcriptional regulators, plays a crucial role in bacterial responses to oxidative stress induced by unfavorable environmental conditions. So far, the understanding of bacterial responses to oxidative stress mainly stems from a handful model bacteria such as Escherichia coli and the studies on non-model bacterial responses to oxidative stress are limited. In this study, Citrobacter braakii JPG1, a commonly occurring strain of enterobacteria, was used as a model for the first time to explore the role of SoxR in the responses to aerobic/anaerobic-menadione stress. First, we analyzed the phylogenetic relationship of SoxR based on the whole genome and constructed the soxR-deleted strain (ΔsoxR). Then, the cell counts of the wild type (WT) and ΔsoxR were compared under aerobic/anaerobic-menadione stress. The results showed that the cell count of WT exposed to the aerobic-low concentration menadione (0.1 mmol/L) stress for 24 h increased by 4.2 times compared with that at the time point of 0 h, while that of ΔsoxR only increased by 1.3 times. The vast majority of WT and ΔsoxR cells died after exposure to the aerobic-high concentration menadione (0.3 mmol/L) stress for 24 h, with the cell counts only 29% and 0.2% of those at the time point of 0 h, respectively. Interestingly, the cell counts of WT showed no significant difference between the anaerobic-menadione stress and the control (P > 0.05), and the same was true for ΔsoxR. All these results indicated that SoxR of C. braakii JPG1 only has a regulatory effect on the redox cycling compound menadione under aerobic conditions and enhance the antioxidant capacity. Under anaerobic conditions, menadione failed to activate SoxR. The findings from this study provide new insights into understanding both the physiological responses to menadione stress and the regulatory role of SoxR under different oxygen conditions.
Bacterial Proteins/physiology*
;
Anaerobiosis
;
Aerobiosis
;
Vitamin K 3/pharmacology*
;
Citrobacter/metabolism*
;
Transcription Factors/physiology*
;
Oxidative Stress
;
Gene Expression Regulation, Bacterial
4.Protein Containing the GGDEF Domain Affects Motility and Biofilm Formation in Vibrio cholerae and is Negatively Regulated by Fur and HapR.
He GAO ; Li Zhi MA ; Qin QIN ; Yao CUI ; Xiao Han MA ; Yi Quan ZHANG ; Biao KAN
Biomedical and Environmental Sciences 2023;36(10):949-958
OBJECTIVE:
This study aimed to investigate whether the VCA0560 gene acts as an active diguanylate cyclase (DGC) in Vibrio cholerae and how its transcription is regulated by Fur and HapR.
METHODS:
The roles of VCA0560 was investigated by utilizing various phenotypic assays, including colony morphological characterization, crystal violet staining, Cyclic di-GMP (c-di-GMP) quantification, and swimming motility assay. The regulation of the VCA0560 gene by Fur and HapR was analyzed by luminescence assay, electrophoretic mobility shift assay, and DNase I footprinting.
RESULTS:
VCA0560 gene mutation did not affect biofilm formation, motility, and c-di-GMP synthesis in V. cholerae, and its overexpression remarkably enhanced biofilm formation and intracellular c-di-GMP level but reduced motility capacity. The transcription of the VCA0560 gene was directly repressed by Fur and the master quorum sensing regulator HapR.
CONCLUSION
Overexpressed VCA0560 functions as an active DGC in V. cholerae, and its transcription is repressed by Fur and HapR.
Vibrio cholerae/genetics*
;
Biofilms
;
Quorum Sensing
;
Mutation
;
Gene Expression Regulation, Bacterial
;
Bacterial Proteins/genetics*
6.H-NS Represses Biofilm Formation and c-di-GMP Synthesis in Vibrio parahaemolyticus.
Xing Fan XUE ; Miao Miao ZHNAG ; Jun Fang SUN ; Xue LI ; Qi Min WU ; Zhe YIN ; Wen Hui YANG ; Bin NI ; Ling Fei HU ; Dong Sheng ZHOU ; Ren Fei LU ; Yi Quan ZHANG
Biomedical and Environmental Sciences 2022;35(9):821-829
OBJECTIVE:
This study aimed to investigate the regulation of histone-like nucleoid structuring protein (H-NS) on biofilm formation and cyclic diguanylate (c-di-GMP) synthesis in Vibrio parahaemolyticus RIMD2210633.
METHODS:
Regulatory mechanisms were analyzed by the combined utilization of crystal violet staining, quantification of c-di-GMP, quantitative real-time polymerase chain reaction, LacZ fusion, and electrophoretic-mobility shift assay.
RESULTS:
The deletion of hns enhanced the biofilm formation and intracellular c-di-GMP levels in V. parahaemolyticus RIMD2210633. H-NS can bind the upstream promoter-proximal DNA regions of scrA, scrG, VP0117, VPA0198, VPA1176, VP0699, and VP2979 to repress their transcription. These genes encode a group of proteins with GGDEF and/or EAL domains associated with c-di-GMP metabolism.
CONCLUSION
One of the mechanisms by which H-NS represses the biofilm formation by V. parahaemolyticus RIMD2210633 may be via repression of the production of intracellular c-di-GMP.
Bacterial Proteins/metabolism*
;
Biofilms
;
Cyclic GMP/analogs & derivatives*
;
Gene Expression Regulation, Bacterial
;
Gentian Violet
;
Histones/metabolism*
;
Vibrio parahaemolyticus/genetics*
7.Research progress of c-di-GMP in the regulation of Escherichia coli biofilm.
Yunjiang HE ; Weijuan JIA ; Shanshan CHI ; Qinglei MENG ; Yunjiao CHEN ; Xueli WANG
Chinese Journal of Biotechnology 2022;38(8):2811-2820
Escherichia coli biofilm is a complex membrane aggregation produced by the adhesion and secretion of extracellular polymeric substances by E. coli cells aggregated on specific media. Pathogenic E. coli will evade the immune system and the impact of various harmful factors in the environment after the formation of biofilm, causing sustained and even fatal damage to the host. Cyclic diguanosine monophosphate (c-di-GMP) is a second messenger ubiquitous in bacteria and plays a crucial role in regulating biofilm formation. This paper reviewed the recent studies about the role of c-di-GMP in the movement, adhesion, and EPS production mechanism of E. coli during biofilm formation, aiming to provide a basis for inhibiting E. coli biofilm from the perspective of c-di-GMP.
Bacterial Proteins/genetics*
;
Biofilms
;
Cyclic GMP/analogs & derivatives*
;
Escherichia coli/metabolism*
;
Escherichia coli Proteins/metabolism*
;
Gene Expression Regulation, Bacterial
8.ToxR represses the synthesis of c-di-GMP in Vibrio parahaemolyticus.
Miaomiao ZHANG ; Xingfan XUE ; Junfang SUN ; Qimin WU ; Xue LI ; Dongsheng ZHOU ; Bin NI ; Renfei LU ; Yiquan ZHANG
Chinese Journal of Biotechnology 2022;38(12):4719-4730
Vibrio parahaemolyticus, the main pathogen causing seafood related food poisoning worldwide, has strong biofilm formation ability. ToxR is a membrane binding regulatory protein, which has regulatory effect on biofilm formation of V. parahaemolyticus, but the specific mechanism has not been reported. c-di-GMP is an important second messenger in bacteria and is involved in regulating a variety of bacterial behaviors including biofilm formation. In this study, we investigated the regulation of ToxR on c-di-GMP metabolism in V. parahaemolyticus. Intracellular c-di-GMP in the wild type (WT) and toxR mutant (ΔtoxR) strains were extracted by ultrasonication, and the concentrations of c-di-GMP were then determined by enzyme linked immunosorbent assay (ELISA). Three c-di-GMP metabolism-related genes scrA, scrG and vpa0198 were selected as the target genes. Quantitative real-time PCR (q-PCR) was employed to calculate the transcriptional variation of each target gene between WT and ΔtoxR strains. The regulatory DNA region of each target gene was cloned into the pHR309 plasmid harboring a promoterless lacZ gene. The recombinant plasmid was subsequently transferred into WT and ΔtoxR strains to detect the β-galactosidase activity in the cellular extracts. The recombinant lacZ plasmid containing each of the target gene was also transferred into E. coli 100λpir strain harboring the pBAD33 plasmid or the recombinant pBAD33-toxR to test whether ToxR could regulate the expression of the target gene in a heterologous host. The regulatory DNA region of each target gene was amplified by PCR, and the over-expressed His-ToxR was purified. The electrophoretic mobility shift assay (EMSA) was applied to verify whether His-ToxR directly bound to the target promoter region. ELISA results showed that the intracellular c-di-GMP level significantly enhanced in ΔtoxR strain relative to that in WT strain, suggesting that ToxR inhibited the production of c-di-GMP in V. parahaemolyticus. qPCR results showed that the mRNA levels of scrA, scrG and vpa0198 significantly increased in ΔtoxR strain relative to those in WT strain, suggesting that ToxR repressed the transcription of scrA, scrG and vpa0198. lacZ fusion assay showed that ToxR was able to repress the promoter activities of scrA, scrG and vpa0198 in both V. parahaemolyticus and E. coli 100λpir. EMSA results showed that His-ToxR was able to bind to the regulatory DNA regions of scrA and scrG, but not to the regulatory DNA region of vpa0198. In conclusion, ToxR inhibited the production of c-di-GMP in V. parahaemolyticus via directly regulating the transcription of enzyme genes associated with c-di-GMP metabolism, which would be beneficial for V. parahaemolyticus to precisely control bacterial behaviors including biofilm formation.
Vibrio parahaemolyticus/metabolism*
;
Escherichia coli/metabolism*
;
Bacterial Proteins/metabolism*
;
Transcription Factors/genetics*
;
Gene Expression Regulation, Bacterial
9.Ligands of TetR family transcriptional regulators: a review.
Panpan WU ; Bowen LI ; Ketao CHEN ; Hang WU ; Buchang ZHANG
Chinese Journal of Biotechnology 2021;37(7):2379-2392
TetR family transcriptional regulators (TFRs) are widely distributed in bacteria and archaea, and the first discovered TFR was confirmed to control the expression of tetracycline efflux pump in Escherichia coli. TFRs can bind DNAs and ligands. Small molecule ligands can induce conformational changes of TFRs, inhibiting or promoting TFRs to control target gene expression. Currently, TFRs have a wide variety of ligands, including carbohydrates, proteins, fatty acids and their derivatives, metal ions, and so on. Due to the diversity of ligands, TFRs regulate a wide range of physiological processes, from basic carbon metabolism and nitrogen metabolism to quorum sensing and antibiotic biosynthesis. On the basis of the recent studies in our laboratory and the literature, we review here the regulatory mechanism mediated by ligands of TFRs in primary and secondary metabolism, as well as the application of ligands for TFRs in the development of gene route and the activation of antibiotic biosynthesis.
Anti-Bacterial Agents
;
Bacteria/metabolism*
;
Bacterial Proteins/metabolism*
;
Gene Expression Regulation, Bacterial
;
Ligands
;
Quorum Sensing
10.Reciprocal Regulation between Fur and Two RyhB Homologs in
Bin NI ; Hai Sheng WU ; You Quan XIN ; Qing Wen ZHANG ; Yi Quan ZHANG
Biomedical and Environmental Sciences 2021;34(4):299-308
Objective:
To investigate reciprocal regulation between Fur and two RyhB homologs in
Methods:
Regulatory relationships were assessed by a combination of colony morphology assay, primer extension, electrophoretic mobility shift assay and DNase I footprinting.
Results:
Fur bound to the promoter-proximal DNA regions of
Conclusion
Fur and the two RyhB homologs exert negative reciprocal regulation, and RyhB homologs have a positive regulatory effect on biofilm formation in
Bacterial Proteins/metabolism*
;
Biofilms
;
Gene Expression Regulation, Bacterial/physiology*
;
Yersinia pestis/physiology*

Result Analysis
Print
Save
E-mail