1.A Case of Anisakiasis Invading the Oropharynx.
Jeon Ha CHOI ; Eun Ju KIM ; Sang Hyun PARK ; Seung Woo KIM
Korean Journal of Otolaryngology - Head and Neck Surgery 2015;58(4):284-286
Anisakiasis is one of the fish-transmitted infections that result from the accidental ingestion of third-stage larva belonging to the family Anisakidae. A large number of cases of gastric anisakiasis have been reported in countries where the eating of raw fish is customary; however, there have been very few reports of anisakiasis involving the oral cavity and oropharynx. A 46-year-old woman complained of sore throat shortly after eating raw flatfishes. The oropharyngeal examination revealed two living tubular spinning objects in the submucosal layer of left posterior pillar. It was removed with biopsy forceps. We report a very rare and unique case of anisakiasis in oropharynx confirmed by pathologic findings. To best of our knowledge, this is the first case report involving oropharyngeal anisakiasis in Korea.
Anisakiasis*
;
Biopsy
;
Eating
;
Female
;
Flatfishes
;
Humans
;
Korea
;
Larva
;
Middle Aged
;
Mouth
;
Oropharynx*
;
Pharyngitis
;
Surgical Instruments
2.Histochemistry of Six Lectins in the Tissues of the Flat Fish Paralichthys olivaceus.
Kyung Sook JUNG ; Mee Jung AHN ; Yong Duk LEE ; Gyung Min GO ; Tae Kyun SHIN
Journal of Veterinary Science 2002;3(4):293-301
Lectins are glycoproteins that specifically bind carbohydrate structures and may participate in the biodefense mechanisms of fish. In this study, the binding of three lectins, Dolichos biflorus agglutinin (DBA), soybean agglutinin (SBA), Bandeiraea simplicifolia BS-1 (isolectin B4), Triticum vulgaris (WGA), Arachis hypogaea (PNA) and Ulex europaeus (UEA-I) were studied in the gill, liver, intestine, kidney, heart, and spleen of the flat fish Paralichthys olivaceus. DBA was detected in intestinal mucous cells, as well as in gill epithelial and mucous cells. It was weakly detected in renal tubule epithelial cells and in bile duct epithelial cells. The strong SBA staining was seen in the intestinal club cells, in bile duct epithelial cells and renal tubule epithelial cells. There were intense positive reactions for isolectin B4 in gill epithelial and mucous cells, and the strong isolectin B4 staining was seen in epithelial cells of the bile duct and intestine. The strong WGA staining was seen in the gill mucosal cells, sinusoid, renal tubule epithelial cells and mucosal cells of the intestine. UEA-I was detected in the gill epithelial and mucosal cells, bile duct epithelial cells and renal tubular epithelial cells. These results suggest that the six lectins examined were localized in the covering epithelia of the various organs of the flat fish and they may participate in the biodefense mechanism of the intra body surface in which is exposed to various antigens.
Animals
;
Epithelial Cells/metabolism
;
Flatfishes/*metabolism
;
Histocytochemistry/veterinary
;
Lectins/*metabolism
;
Mucus/metabolism
;
Peanut Agglutinin/metabolism
;
Plant Lectins/metabolism
;
Soybean Proteins/metabolism
;
Wheat Germ Agglutinins/metabolism
3.Development of a multiplex PCR assay to detect Edwardsiella tarda, Streptococcus parauberis, and Streptococcus iniae in olive flounder (Paralichthys olivaceus).
Seong Bin PARK ; Kyoung KWON ; In Seok CHA ; Ho Bin JANG ; Seong Won NHO ; Fernand F FAGUTAO ; Young Kyu KIM ; Jong Earn YU ; Tae Sung JUNG
Journal of Veterinary Science 2014;15(1):163-166
A multiplex PCR protocol was established to simultaneously detect major bacterial pathogens in olive flounder (Paralichthys olivaceus) including Edwardsiella (E.) tarda, Streptococcus (S.) parauberis, and S. iniae. The PCR assay was able to detect 0.01 ng of E. tarda, 0.1 ng of S. parauberis, and 1 ng of S. iniae genomic DNA. Furthermore, this technique was found to have high specificity when tested with related bacterial species. This method represents a cheaper, faster, and reliable alternative for identifying major bacterial pathogens in olive flounder, the most important farmed fish in Korea.
Animals
;
Edwardsiella tarda/genetics/*isolation & purification
;
Enterobacteriaceae Infections/diagnosis/microbiology/*veterinary
;
Fish Diseases/*diagnosis/microbiology
;
Fisheries/*methods
;
*Flatfishes
;
Multiplex Polymerase Chain Reaction/economics/*veterinary
;
Sensitivity and Specificity
;
Streptococcal Infections/diagnosis/microbiology/*veterinary
;
Streptococcus/genetics/*isolation & purification