1.Some observations on the adaptation of Eimeria tenella (local isolates) sporozoites on chicken embryos through chorioallantoic membrane.
M Abdul HAFEEZ ; Masood AKHTAR ; M Mazhar AYAZ
Journal of Veterinary Science 2006;7(1):59-61
Eimeria (E.) tenella (local isolate) sporozoites were adapted on the chorioallantoic membrane (CAM) of 10-12 days chicken embryos and completed its life cycle in 6~7 days at 39 degrees C and 70 per cent humidity. Only 23 embryos (4.6%) were found dead from 1~4 day post inoculation of sporozoites with mild lesions on CAM with no gametocytes but few sporozoites in chorioallantoic fluid (CAF). On 5~7 day post inoculation, 432 embryos (86.4%) were found dead with severe haemorrhages on CAM and CAF contained uncountable number of gametocytes. After seven days post inoculation, 45 embryos (9%) were found to be alive. Some oocysts were also detected in the CAF on 6~7 days post inoculation. In the histological sections of the CAM, there were abundant small dark colored rounded bodies of gametes; distributed extensively in tissues of CAM on 5~7 days post inoculation of sporozoites. In some cases, cluster of small mature and immature relatively large bodies were seen in increasing numbers on 5~6 days post inoculation.
Animals
;
Chick Embryo
;
*Chickens
;
Chorioallantoic Membrane/*parasitology
;
Coccidiosis/parasitology/*veterinary
;
Eimeria tenella/*growth&development
;
Histocytochemistry
;
Poultry Diseases/*parasitology
2.Development of Eimeria tenella in MDBK cell culture with a note on enhancing effect of preincubation with chicken spleen cells.
Jong Yil CHAI ; Soon Hyung LEE ; Woong Heum KIM ; Chong Ku YUN
The Korean Journal of Parasitology 1989;27(2):87-100
Eimeria tenella, an intracellular protozoan parasite infecting the epithelial cells of the ceca of chickens, causes severe diarrhea and bleeding that can lead its host to death. It is of interest that E. tenella first penetrate into the mucosal intraepithelial lymphocytes (IEL) before they parasitize crypt or villous epithelial cells. This in vitro study was undertaken to know whether the penetration of E. tenella into such a lymphoid cell is a beneficial step for the parasite survival and development. Three sequential experiments were performed. First, the in vitro established bovine kidney cell line, MDBK cells, were evaluated for use as host cells for E. tenella, through morphological observation. Second, the degree of parasite development and multiplication in MDBK cells was quantitatively assayed using radioisotope-labelled uracil (3H-uracil). Third, the E. tenella sporozoites viability was assayed after preincubation of them with chicken spleen cells. E. tenella oocysts obtained from the ceca of the infected chickens were used for the source of the sporozoites. Spleen cells (E) obtained from normal chickens (FP strain) were preincubated with the sporozoites (T) at the E:T ratio of 100:1, 50:1 or 25:1 for 4 or 12 hours, and then the mixture was inoculated into the MDBK cell monolayer. Morphologically the infected MDBK cells revealed active schizogonic cycle of E. tenella in 3-4 days, which was characterized by the appearance of trophozoites, and immature and mature schizonts containing merozoites. The 3H-uracil uptake by E. tenella increased gradually in the MDBK cells, which made a plateau after 48-60 hours, and decreased thereafter. The uptake amount of 3H-uracil depended not only upon the inoculum size of the sporozoites but also on the degree of time delay (preincubation; sporozoites only) from excystation to inoculation into MDBK cells. The 3H-uracil uptake became lower as the preincubation time was prolonged. In comparison, after preincubation of sporozoites with spleen cells for 4 or 12 hours, the 3H-uracil uptake was significantly increased compared with that of control group. From the results, it was inferred that, although the penetration of E. tenella sporozoites into the lymphoid cells such as IEL is not an essential step, it should be at least a beneficial one for the survival and development of sporozoites in the chicken intestine.
Cattle-
;
Cell-Line
;
Cells,-Cultured
;
Chickens-
;
English-Abstract
;
*Eimeria-growth-and-development
;
*Kidney-parasitology
;
*Lymphocytes-parasitology
;
*Spleen-cytology
3.Suppression of Eimeria tenella Sporulation by Disinfectants.
The Korean Journal of Parasitology 2014;52(4):435-438
The disinfectant effects (DEs) of 10 types of chemicals, defined by their ability to destroy or inhibit oocysts and consequently prevent sporulation of Eimeria tenella field isolate, were evaluated in vitro. Correct species assignments and sample purities were confirmed by the singular internal transcribed spacer (ITS)-PCR analysis. A total of 18 treatments were performed, and the disinfection suppression levels were 75.9% for 39% benzene + 22% xylene (1:10 dilution), 85.5% for 30% cresol soup (1:1 dilution), and 91.7% for 99.9% acetic acid (1:2 dilution) group. The results indicate that acetic acid, cresol soup, and benzene+xylene are good candidates for suppression of E. tenella oocyst sporulation.
Animals
;
Antiprotozoal Agents/*pharmacology
;
Cluster Analysis
;
DNA, Protozoan/chemistry/genetics
;
DNA, Ribosomal Spacer/chemistry/genetics
;
Disinfectants/*pharmacology
;
Eimeria tenella/*drug effects/*growth & development
;
Microscopy
;
Molecular Sequence Data
;
Parasitic Sensitivity Tests
;
Phylogeny
;
Sequence Analysis, DNA
;
Spores, Protozoan/*drug effects/*growth & development