1.Perfusion Magnetic Resonance Imaging: A Comprehensive Update on Principles and Techniques.
Geon Ho JAHNG ; Ka Loh LI ; Leif OSTERGAARD ; Fernando CALAMANTE
Korean Journal of Radiology 2014;15(5):554-577
Perfusion is a fundamental biological function that refers to the delivery of oxygen and nutrients to tissue by means of blood flow. Perfusion MRI is sensitive to microvasculature and has been applied in a wide variety of clinical applications, including the classification of tumors, identification of stroke regions, and characterization of other diseases. Perfusion MRI techniques are classified with or without using an exogenous contrast agent. Bolus methods, with injections of a contrast agent, provide better sensitivity with higher spatial resolution, and are therefore more widely used in clinical applications. However, arterial spin-labeling methods provide a unique opportunity to measure cerebral blood flow without requiring an exogenous contrast agent and have better accuracy for quantification. Importantly, MRI-based perfusion measurements are minimally invasive overall, and do not use any radiation and radioisotopes. In this review, we describe the principles and techniques of perfusion MRI. This review summarizes comprehensive updated knowledge on the physical principles and techniques of perfusion MRI.
Arteries/chemistry
;
Brain Neoplasms/radiography
;
Contrast Media/diagnostic use
;
Humans
;
Magnetic Resonance Imaging/standards/*trends
;
Spin Labels
;
Stroke/radiography
2.Imaging-Based Tumor Treatment Response Evaluation: Review of Conventional, New, and Emerging Concepts.
Hee KANG ; Ho Yun LEE ; Kyung Soo LEE ; Jae Hun KIM
Korean Journal of Radiology 2012;13(4):371-390
Tumor response may be assessed readily by the use of Response Evaluation Criteria in Solid Tumor version 1.1. However, the criteria mainly depend on tumor size changes. These criteria do not reflect other morphologic (tumor necrosis, hemorrhage, and cavitation), functional, or metabolic changes that may occur with targeted chemotherapy or even with conventional chemotherapy. The state-of-the-art multidetector CT is still playing an important role, by showing high-quality, high-resolution images that are appropriate enough to measure tumor size and its changes. Additional imaging biomarker devices such as dual energy CT, positron emission tomography, MRI including diffusion-weighted MRI shall be more frequently used for tumor response evaluation, because they provide detailed anatomic, and functional or metabolic change information during tumor treatment, particularly during targeted chemotherapy. This review elucidates morphologic and functional or metabolic approaches, and new concepts in the evaluation of tumor response in the era of personalized medicine (targeted chemotherapy).
Antineoplastic Agents/*therapeutic use
;
*Diagnostic Imaging/standards/trends
;
Forecasting
;
Humans
;
Individualized Medicine
;
Neoplasms/*drug therapy/*pathology
;
*Outcome Assessment (Health Care)
;
Practice Guidelines as Topic
;
Radiology/standards/trends
;
World Health Organization
3.Integrated Whole Body MR/PET: Where Are We?.
Hye Jin YOO ; Jae Sung LEE ; Jeong Min LEE
Korean Journal of Radiology 2015;16(1):32-49
Whole body integrated magnetic resonance imaging (MR)/positron emission tomography (PET) imaging systems have recently become available for clinical use and are currently being used to explore whether the combined anatomic and functional capabilities of MR imaging and the metabolic information of PET provide new insight into disease phenotypes and biology, and provide a better assessment of oncologic diseases at a lower radiation dose than a CT. This review provides an overview of the technical background of combined MR/PET systems, a discussion of the potential advantages and technical challenges of hybrid MR/PET instrumentation, as well as collection of possible solutions. Various early clinical applications of integrated MR/PET are also addressed. Finally, the workflow issues of integrated MR/PET, including maximizing diagnostic information while minimizing acquisition time are discussed.
Coordination Complexes/chemistry/diagnostic use
;
Heart/radiography
;
Humans
;
*Magnetic Resonance Imaging
;
Neoplasm Metastasis
;
Neoplasm Staging
;
Neoplasms/pathology/radiography
;
*Positron-Emission Tomography
;
Radiopharmaceuticals/diagnostic use
;
Tomography, X-Ray Computed
;
Whole Body Imaging/*standards/*trends