1.Study on inhibitory effects of c9, t11-conjugated linoleic acid on migration of human gastric carcinoma cell line via cyclooxygenase-2 pathway.
Jing-Shu ZHANG ; Qi WAN ; Bing-Qing CHEN ; Yan-Mei YANG ; Yan-Hui GAO ; Wen-Guang SUN
Chinese Journal of Preventive Medicine 2007;41(6):471-474
OBJECTIVETo study the inhibitory effects of c9, t11-conjugated linoleic acid (c9, t11-CLA) on migration of human gastric carcinoma cell line (SGC-7901) via cyclooxygenase-2 (COX-2) pathway.
METHODSAfter inhibiting COX-2 activity by 100 micromol/L COX-2 inhibitor NS-398 in SGC-7901 cell, we treated SGC-7901 cells with c9, t11-CLA at a concentration of 200,100, 50, 25 micromol/L for 24 h, respectively. Using reconstituted basement membrane invasion, adhesion, chemotaxis assays, we detected the effect of c9, t11-CLA and COX-2 on the cell migration.
RESULTSCompared to NS-398 group, 200, 100 micromol/L c9, t11-CLA significantly suppressed SGC-7901 cells invading into the reconstituted basement membrane (F = 14.309, P = 0.000; F = 19.005, P = 0.000). 200 micromol/L c9, t11-CLA significantly inhibited SGC-7901 cells adhering to laminin, fibronectin and Matrigel (F = 3.063, P = 0.021; F = 6.692, P = 0.001; F = 11.999, P = 0.000). The chemotaxis of SGC-7901 cells and inhibitory frequency were significantly decreased in the 200 micromol/L c9, t11-CLA group (F = 1.380, P = 0.276).
CONCLUSIONc9, t11-CLA inhibits invasion, adhesion and chemotaxis of SGC-7901 cells, and the COX-2 plays an important role in the process. [ Key words]
Cell Movement ; drug effects ; physiology ; Cyclooxygenase 2 ; metabolism ; Cyclooxygenase 2 Inhibitors ; pharmacology ; Humans ; Linoleic Acid ; metabolism ; pharmacology ; Neoplasm Invasiveness ; Stomach Neoplasms ; metabolism ; pathology ; Tumor Cells, Cultured
2.Effects of cyclooxygenase 2 prostaglandin E2 induced by reactive oxygen species on wound healing.
Yiping HU ; Yifan ZHANG ; Yunsong ZHANG ; Min YAO
Chinese Journal of Burns 2014;30(3):254-257
Different from the previous knowledge regarding reactive oxygen species (ROS), recent research suggests that ROS play essential roles in initiating cascade reaction of wound healing. During wound healing, ROS can serve as the second messenger to regulate signal transduction and gene expression. In this paper, we review the mechanism of generation of cyclooxygenase 2-prostaglandin E2 induced by ROS, which regulates the early inflammatory response and subsequent healing after injury.
Cyclooxygenase 2
;
metabolism
;
Dinoprostone
;
metabolism
;
Reactive Oxygen Species
;
metabolism
;
Reverse Transcriptase Polymerase Chain Reaction
;
methods
;
Signal Transduction
;
Wound Healing
;
physiology
3.Comparison of pharmacological and genetic inhibition of cyclooxygenase-2: effects on adult neurogenesis in the hippocampal dentate gyrus.
Sung Min NAM ; Jong Whi KIM ; Dae Young YOO ; Jung Hoon CHOI ; Woosuk KIM ; Hyo Young JUNG ; Moo Ho WON ; In Koo HWANG ; Je Kyung SEONG ; Yeo Sung YOON
Journal of Veterinary Science 2015;16(3):245-251
Inducible cyclooxygenase-2 (COX-2) has received much attention because of its role in neuro-inflammation and synaptic plasticity. Even though COX-2 levels are high in healthy animals, the function of this factor in adult neurogenesis has not been clearly demonstrated. Therefore, we performed the present study to compare the effects of pharmacological and genetic inhibition of COX-2 on adult hippocampal neurogenesis. Physiological saline or the same volume containing celecoxib was administered perorally every day for 5 weeks using a feeding needle. Compared to the control, pharmacological and genetic inhibition of COX-2 reduced the appearance of nestin-immunoreactive neural stem cells, Ki67-positive nuclei, and doublecortin-immunoreactive neuroblasts in the dentate gyrus. In addition, a decrease in phosphorylated cAMP response element binding protein (pCREB) at Ser133 was observed. Compared to pharmacological inhibition, genetic inhibition of COX-2 resulted in significant reduction of neural stem cells, cell proliferation, and neuroblast differentiation as well as pCREB levels. These results suggest that COX-2 is part of the molecular machinery that regulates neural stem cells, cell proliferation, and neuroblast differentiation during adult hippocampal neurogenesis via pCREB. Additionally, genetic inhibition of COX-2 strongly reduced neural stem cell populations, cell proliferation, and neuroblast differentiation in the dentate gyrus compared to pharmacological inhibition.
Animals
;
Celecoxib/*pharmacology
;
Cell Differentiation/drug effects/physiology
;
Cell Proliferation/drug effects/physiology
;
Cyclooxygenase 2/*genetics/metabolism
;
Cyclooxygenase 2 Inhibitors/*pharmacology
;
Dentate Gyrus/drug effects/*physiology
;
Male
;
Mice
;
Mice, Knockout
;
Neural Stem Cells/drug effects/physiology
;
Neurogenesis/drug effects
4.Correlation of the nuclear accumulation of CTNNB1 and colonic tumorigenesis.
Zhe-fu QIU ; Keiji MARUYAMA ; De-min HAN ; Satoshi NAKAMURA
Chinese Medical Journal 2006;119(13):1113-1117
Animals
;
Apoptosis
;
Cell Membrane
;
metabolism
;
Cell Nucleus
;
metabolism
;
Colonic Neoplasms
;
etiology
;
metabolism
;
Cyclooxygenase 2
;
physiology
;
Cytoplasm
;
metabolism
;
Female
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Piroxicam
;
pharmacology
;
beta Catenin
;
metabolism
5.The role of cyclooxygenase-2/prostanoid pathway in visceral pain induced liver stress response in rats.
Donald PISTON ; Shan WANG ; Yi FENG ; Ying-jiang YE ; Jing ZHOU ; Ke-wei JIANG ; Feng XU ; Yong ZHAO ; Zhi-rong CUI
Chinese Medical Journal 2007;120(20):1813-1819
BACKGROUNDCyclooxygenase (COX) is the rate-limiting enzyme in the production of prostanoids from arachidonic acid. COX-2 is the inducible enzyme in the COX family, together with the prostanoids forms the COX-2/prostanoid pathway. Research showed that the COX-2/prostanoid pathway is activated in hepatic diseases and liver stress reaction, such as fibrogenesis, portal hypertension, carcinogenesis, and ischemic/reperfusion injury. But there was no report on visceral pain induced liver stress. This study was to investigate the role of the COX-2/prostanoid pathway in liver stress response in rat acute colitis visceral pain liver stress model.
METHODSFifty-three male SD rats were randomly divided into Naive, Model, NS398 treatment, and Morphine treatment groups. The rat acute colitis visceral pain liver stress model was established under anesthesia by the colonic administration of 0.5 ml of 6% acetic acid using a urethral catheter. NS398 and morphine were administrated 30 minutes prior to model establishment in NS398 and Morphine treatment groups respectively. Spontaneous activities and pain behavior were counted and the extent of colonic inflammation was assessed histologically. Liver tissue levels of Glutathione-S-Transferase (GST) activity, COX-2 mRNA, prostaglandin E2 (PGE2), thromboxane B2 (TXB2) and 6-Ketone-prostaglandin F1alpha (6-K-PGF1alpha) contents were assessed.
RESULTSThirty minutes after the colonic administration of acetic acid, a significant decrease in spontaneous activities and an increase in pain behaviors were observed in Model group (P < 0.01 and P < 0.05 respectively), accompanied by colonic inflammation. Liver GST activity levels significantly dropped (P < 0.05). Liver COX-2 mRNA expression significantly increased, accompanied by an increase in liver concentrations of PGE2 and TXB2, but no obvious change in 6-K-PGF1alpha concentrations. NS398 and morphine both ameliorated post-stress liver GST activity (P < 0.05 and P < 0.01 respectively), decreased stress-induced COX-2 expression, decreased PGE2 and TXB2 production, but increased liver 6-K-PGF1alpha levels. Morphine attenuation in colonic tissue inflammation was apparent at 24 hours (P < 0.05).
CONCLUSIONSAcute colitis visceral pain liver stress can induce liver injury. Liver injury might have occurred through the activation of the COX-2/prostanoid pathway and increased production of PGE2 and TXB2. Effective analgesia might offer protective effect during visceral pain stress.
Acute Disease ; Animals ; Colitis ; physiopathology ; Cyclooxygenase 2 ; physiology ; Hyperalgesia ; physiopathology ; Liver ; metabolism ; Liver Diseases ; physiopathology ; Male ; Morphine ; pharmacology ; Nitrobenzenes ; pharmacology ; Prostaglandins ; physiology ; Rats ; Rats, Sprague-Dawley ; Sulfonamides ; pharmacology
6.Role of Prostaglandins in Colon Cancer.
The Korean Journal of Gastroenterology 2008;51(5):274-279
Colon cancer is one of the major leading causes of cancer-related deaths in the Western countries. In Korea, the incidence of colon cancer is increasing due to changes in environment and lifestyle such as diet. Chemoprevention strategy using non-steroidal anti-inflammatory drugs (NSAIDs) has been under intensive clinical and epidemiological research as these drugs suppress colorectal cancer. The best known targets of NSAIDs are cyclooxygenase (COX) enzymes, which convert arachidonic acid to prostaglandins (PGs) and thromboxane. Among these PGs, prostaglandin E2 (PGE2) can promote tumor growth by binding its receptors and activating signal pathways which control cell proliferation, migration, apoptosis, and angiogenesis. Therefore, COX inhibition is promising approach for chemoprevention of colorectal cancer. However, the prolonged use of COX-2 inhibitors is associated with unacceptable cardiovascular side effects. Thus, new targets involved in PGs metabolism are under investigation. 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a key metabolic enzyme of PGE2, was up-regulated in normal colonic epithelium, but decreased in colon cancer. Recent findings suggest that 15-PGDH is involved in the neoplastic progression of initiated colonic epithelial cells. Also, new players related with PGs metabolism including prostaglandin transporter (PGT) and microsomal prostaglandin E synthase (mPGES) were reported to play a role in colorectal cancer development. This review presents current knowledge about the role of prostaglandins and associated proteins in colorectal cancer development and progression.
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
;
Colonic Neoplasms/drug therapy/*etiology/prevention & control
;
Cyclooxygenase 2/metabolism
;
Cyclooxygenase Inhibitors/pharmacology/therapeutic use
;
Humans
;
Hydroxyprostaglandin Dehydrogenases/antagonists & inhibitors/metabolism
;
Prostaglandins/metabolism/*physiology
7.COX-2 and HO-1 are involved in the delayed preconditioning elicited by bradykinin in rat hearts.
Hai-Zheng DONG ; Ying-Ying CHEN ; Li ZHU ; He-Jing XU ; Yang WANG ; Fa-Rong SHEN ; Zhu-Nan CAI ; Yue-Liang SHEN
Journal of Zhejiang University. Medical sciences 2007;36(1):13-20
OBJECTIVETo investigate whether cyclooxygenase-2 (COX-2) and heme oxygenase-1 (HO-1) are involved in the bradykinin-induced delayed protection.
METHODSCardiac contractility, lactate dehydrogenase (LDH) and infarct area were analyzed in isolated rat hearts undergoing ischemia-reperfusion injury induced by Langendorff method.
RESULTConscious rats received bradykinin (40 microg/kg), and the isolated hearts were subjected to 30 min of regional ischemia and 120 min of reperfusion 24 h later. Bradykinin pretreatment would improve post-ischemic performance, and reduced the release of LDH and infarct size. COX-2 inhibitor celecoxib (3 mg/kg) abolished bradykinin-induced protection, leading to poorer myocardial performance, release of more LDH and larger infarct sizes. Administration of HO-1 inhibitor ZnPP IX(20 microg/kg) before bradykinin partially abrogated the delayed protection. Pretreatment with the mitochondrial ATP sensitive potassium channel(mitoK(ATP) antagonist 5-HD before or 24 h after bradykinin administration also abolished the effect of protection.
CONCLUSIONThe results indicate that activation of HO-1 and COX-2 might be involved in the delayed cardioprotection evoked by bradykinin, and mitoK(ATP) channel may serve as both a trigger and a mediator in the cardioprotection.
Animals ; Bradykinin ; pharmacology ; Celecoxib ; Cyclooxygenase 2 ; metabolism ; Cyclooxygenase Inhibitors ; pharmacology ; Heme Oxygenase-1 ; metabolism ; In Vitro Techniques ; Ischemic Preconditioning, Myocardial ; methods ; Male ; Myocardial Reperfusion Injury ; enzymology ; prevention & control ; Potassium Channels ; physiology ; Pyrazoles ; pharmacology ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Sulfonamides ; pharmacology
8.Cyclooxygenase-2 inhibitors modulate skin aging in a catalytic activity-independent manner.
Mi Eun LEE ; So Ra KIM ; Seungkoo LEE ; Yu Jin JUNG ; Sun Shim CHOI ; Woo Jin KIM ; Jeong A HAN
Experimental & Molecular Medicine 2012;44(9):536-544
It has been proposed that the pro-inflammatory catalytic activity of cyclooxygenase-2 (COX-2) plays a key role in the aging process. However, it remains unclear whether the COX-2 activity is a causal factor for aging and whether COX-2 inhibitors could prevent aging. We here examined the effect of COX-2 inhibitors on aging in the intrinsic skin aging model of hairless mice. We observed that among two selective COX-2 inhibitors and one non-selective COX inhibitor studied, only NS-398 inhibited skin aging, while celecoxib and aspirin accelerated skin aging. In addition, NS-398 reduced the expression of p53 and p16, whereas celecoxib and aspirin enhanced their expression. We also found that the aging-modulating effect of the inhibitors is closely associated with the expression of type I procollagen and caveolin-1. These results suggest that pro-inflammatory catalytic activity of COX-2 is not a causal factor for aging at least in skin and that COX-2 inhibitors might modulate skin aging by regulating the expression of type I procollagen and caveolin-1.
Animals
;
Aspirin/administration & dosage
;
Catalysis
;
Caveolin 1/genetics/metabolism
;
Collagen Type I/genetics/metabolism
;
*Cyclooxygenase 2/metabolism/physiology
;
Cyclooxygenase 2 Inhibitors/*administration & dosage
;
Gene Expression Regulation
;
Mice
;
Nitrobenzenes/*administration & dosage
;
Pyrazoles/administration & dosage
;
Skin Aging/*drug effects/physiology
;
Sulfonamides/*administration & dosage
;
Tumor Suppressor Protein p53/genetics/metabolism
9.Cylooxgenase-2: a novel molecular target for the prevention and treatment of head and neck cancer on the advance of basic and preclinical research.
Wei GUO ; Qing-hua ZENG ; Cun-yu WANG
Chinese Journal of Stomatology 2004;39(3):261-263
Animals
;
Apoptosis
;
physiology
;
Carcinoma, Squamous Cell
;
drug therapy
;
physiopathology
;
prevention & control
;
Cyclooxygenase 2
;
Cyclooxygenase 2 Inhibitors
;
Cyclooxygenase Inhibitors
;
therapeutic use
;
Head and Neck Neoplasms
;
drug therapy
;
physiopathology
;
prevention & control
;
Humans
;
Membrane Proteins
;
Neoplasm Invasiveness
;
Neoplasm Metastasis
;
drug therapy
;
Neovascularization, Pathologic
;
drug therapy
;
metabolism
;
Prostaglandin-Endoperoxide Synthases
;
metabolism
10.Pressure change-mediated effects on vasoactive protein of endothelial cells in the flow field in vitro.
Jia HU ; Bengui ZHANG ; Jiang WU ; Eryong ZHANG ; Weilin XU ; Yingkang SHI ; Yingqiang GUO
Journal of Biomedical Engineering 2010;27(4):795-800
Lining the inner surface of the walls of blood vessels, Endothelial cells (ECs) go beyond providing selective membrane to maintain the natural structure and function of vessels; they also synthesize varieties of vasoactive proteins to modify the pressure shift in the local flow field and hence they adapt the physiological activities of vessels. In this experiment, ELISA and RT-PCR technologies were adopted. We set up five different pressure loaded ECs groups,one non-activated cultured ECs group and one single shear stress loaded ECs group. Such a design was intended to demonstrate the effects of pressure shift on the expression of vasoactive protein synthesized by ECs [Endothelin-1(ET-1), endothelial Nitric Oxide Synthase (eNOS), Cyclooxygenase-2(COX-2) and Vascular Endothelial Growth Factor(VEGF)]. Our aim was to elucidate the mechanism of the pressure shift mediated dysfunction in ECs and the related dose-effect relationship. Based on these data, we suggest that ECs could modify the expression of vasoactive protein for adapting to the pressure shift in the local flow field; while in the process of--40 cmH2O induced ECs' dysfunction, the vasoactive proteins eNOS, COX-2 and VEGF play an important role in protecting ECs.
Cells, Cultured
;
Cyclooxygenase 2
;
genetics
;
metabolism
;
Endothelial Cells
;
metabolism
;
physiology
;
Endothelin-1
;
genetics
;
metabolism
;
Humans
;
Nitric Oxide Synthase Type III
;
genetics
;
metabolism
;
Pressure
;
RNA, Messenger
;
genetics
;
metabolism
;
Vascular Endothelial Growth Factor A
;
genetics
;
metabolism