1.Genetic features associated with ¹⁸F-FDG uptake in intrahepatic cholangiocarcinoma
Keun Soo AHN ; Koo Jeong KANG ; Yong Hoon KIM ; Tae Seok KIM ; Bong Il SONG ; Hae Won KIM ; Daniel O'BRIEN ; Lewis R ROBERTS ; Jeong Woo LEE ; Kyoung Sook WON
Annals of Surgical Treatment and Research 2019;96(4):153-161
PURPOSE: In intrahepatic cholangiocarcinoma (iCCA), genetic characteristics on ¹⁸F-fluorodeoxyglucose (¹⁸F-FDG)-PET scans are not yet clarified. If specific genetic characteristics were found to be related to FDG uptake in iCCA, we can predict molecular features based on the FDG uptake patterns and to distinguish different types of treatments. In this purpose, we analyzed RNA sequencing in iCCA patients to evaluate gene expression signatures associated with FDG uptake patterns. METHODS: We performed RNA sequencing of 22 cases iCCA who underwent preoperative ¹⁸F-FDG-PET, and analyzed the clinical and molecular features according to the maximum standard uptake value (SUVmax). Genes and biological pathway which are associated with SUVmax were analyzed. RESULTS: Patients with SUVmax higher than 9.0 (n = 9) had poorer disease-free survival than those with lower SUVmax (n = 13, P = 0.035). Genes related to glycolysis and gluconeogenesis, phosphorylation and cell cycle were significantly correlated with SUVmax (r ≥ 0.5). RRM2, which is related to the toxicity of Gemcitabine was positively correlated with SUVmax, and SLC27A2 which is associated with Cisplastin response was negatively correlated with SUVmax. According to the pathway analysis, cell cycle, cell division, hypoxia, inflammatory, and metabolism-related pathways were enriched in high SUVmax patients. CONCLUSION: The genomic features of gene expression and pathways can be predicted by FDG uptake features in iCCA. Patients with high FDG uptake have enriched cell cycle, metabolism and hypoxic pathways, which may lead to a more rational targeted treatment approach.
Anoxia
;
Cell Cycle
;
Cell Division
;
Cholangiocarcinoma
;
Disease-Free Survival
;
Fluorodeoxyglucose F18
;
Gene Expression
;
Gluconeogenesis
;
Glycolysis
;
Humans
;
Metabolism
;
Phosphorylation
;
Positron-Emission Tomography
;
Sequence Analysis, RNA
;
Transcriptome
2.Effects of Bicycle Ergometer Exercise on Cerebral Blood Flow Velocity and Electroencephalogram Response in Normoxia and Hypoxia
Seong Dae KIM ; Myung Wha KIM ; Il Gyu JEONG
Korean Journal of Health Promotion 2019;19(1):59-67
BACKGROUND: The cerebral blood flow velocity (CBFV) has been known to increase in response to acute hypoxia. However, how CBFV might respond to exercise in hypoxic conditions and be associated with electroencephalogram (EEG) remains unclear. The purpose of this study was to evaluate the effect of exercise in hypoxic conditions corresponding to altitudes of 4,000 m on CBFV and EEG. METHODS: In a randomized, double-blind, balanced crossover study, ten healthy volunteers (19.8±0.4 years) were asked to perform the incremental bicycle ergometer exercise twice in hypoxic and control (sea level) conditions with a 1-week interval, respectively. Exercise intensity was set initially at 50 W and increased by 25 W every 2 minutes to 125 W. Acute normobaric hypoxic condition was maintained for 45 minutes using low oxygen gas mixture. CBFV in the middle cerebral artery (MCA) and EEG were measured at rest 5 minutes, rest 15 minutes, immediately after exercise, and 15 minutes recovery using transcranial-Doppler sonography and EEG signal was recorded from 6 scalp sites leading to analysis of alpha and beta wave relative activities. All data were analyzed using two-way repeated-measures analysis of variance and Pearson's correlation. RESULTS: CBFV in the MCA in the hypoxic condition was significantly higher than that in the control condition at rest 5 minutes (83±9 vs. 69±9 cm/s, P<0.01), rest 15 minutes (87±8 vs. 67±7 cm/s, P<0.001), immediately after exercise (112±9 vs. 97±9 cm/s, P<0.01), and 15 minutes recovery (91±11 vs. 74±7 cm/s, P<0.01). However, no significant correlation was found between the changes of CBFV and EEG wave activities. CONCLUSIONS: These results suggest that the drastic change of CBFV observed during exercise with hypoxia might appear independently with EEG wave activities.
Altitude
;
Anoxia
;
Cerebrovascular Circulation
;
Cross-Over Studies
;
Electroencephalography
;
Healthy Volunteers
;
Middle Cerebral Artery
;
Oxygen
;
Scalp
3.Propofol with and without Midazolam for Diagnostic Upper Gastrointestinal Endoscopies in Children
Ulas Emre AKBULUT ; Seyfi KARTAL ; Ufuk DOGAN ; Gulgun Elif AKCALI ; Serap KALAYCI ; Hulya KIRCI
Pediatric Gastroenterology, Hepatology & Nutrition 2019;22(3):217-224
PURPOSE: Various publications on the use of sedation and anesthesia for diagnostic procedures in children have demonstrated that no ideal agent is available. Although propofol has been widely used for sedation during esophagogastroduodenoscopy in children, adverse events including hypoxia and hypotension, are concerns in propofol-based sedation. Propofol is used in combination with other sedatives in order to reduce potential complications. We aimed to analyze whether the administration of midazolam would improve the safety and efficacy of propofol-based sedation in diagnostic esophagogastroduodenoscopies in children. METHODS: We retrospectively reviewed the hospital records of children who underwent diagnostic esophagogastroduodenoscopies during a 30-month period. Demographic characteristics, vital signs, medication dosages, induction times, sedation times, recovery times, and any complications observed, were examined. RESULTS: Baseline characteristics did not differ between the midazolam-propofol and propofol alone groups. No differences were observed between the two groups in terms of induction times, sedation times, recovery times, or the proportion of satisfactory endoscopist responses. No major procedural complications, such as cardiac arrest, apnea, or laryngospasm, occurred in any case. However, minor complications developed in 22 patients (10.7%), 17 (16.2%) in the midazolam-propofol group and five (5.0%) in the propofol alone group (p=0.010). CONCLUSION: The sedation protocol with propofol was safe and efficient. The administration of midazolam provided no additional benefit in propofol-based sedation.
Anesthesia
;
Anoxia
;
Apnea
;
Child
;
Conscious Sedation
;
Endoscopy
;
Endoscopy, Digestive System
;
Endoscopy, Gastrointestinal
;
Heart Arrest
;
Hospital Records
;
Humans
;
Hypnotics and Sedatives
;
Hypotension
;
Laryngismus
;
Midazolam
;
Propofol
;
Retrospective Studies
;
Vital Signs
4.GM-CSF Enhances Mobilization of Bone Marrow Mesenchymal Stem Cells via a CXCR4-Medicated Mechanism
Jiyoung KIM ; Na Kyeong KIM ; So Ra PARK ; Byung Hyune CHOI
Tissue Engineering and Regenerative Medicine 2019;16(1):59-68
BACKGROUND: This study was conducted to investigate the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) on the mobilization of mesenchymal stem cells (MSCs) from the bone marrow (BM) into the peripheral blood (PB) in rats. METHODS: GM-CSF was administered subcutaneously to rats at 50 µg/kg body weight for 5 consecutive days. The BM and PB of rats were collected at 1, 3, and 5 days during the administration for analysis. RESULTS: Upon GM-CSF administration, the number of mononuclear cells increased rapidly at day 1 both in the BM and PB. This number decreased gradually over time in the BM to below the initial amount by day 5, but was maintained at a high level in the PB until day 5. The colony-forming unit-fibroblasts were increased in the PB by 10.3-fold at day 5 of GM-CSF administration, but decreased in the BM. Compared to GM-CSF, granulocyte-colony stimulating factor (G-CSF) stimulated lower levels of MSC mobilization from the BM to the PB. Immunohistochemical analysis revealed that GM-CSF induced a hypoxic and proteolytic microenvironment and increased C-X-C chemokine receptor type 4 (CXCR4) expression in the BM. GM-CSF added to BM MSCs in vitro dose-dependently increased CXCR4 expression and cell migration. G-CSF and stromal cell derived factor-1 (SDF-1) showed similar results in these in vitro assays. Know-down of CXCR4 expression with siRNA significantly abolished GM-CSF- and G-CSF-induced MSC migration in vitro, indicating the involvement of the SDF-1-CXCR4 interaction in the mechanism. CONCLUSION: These results suggest that GM-CSF is a useful tool for mobilizing BM MSCs into the PB.
Animals
;
Anoxia
;
Body Weight
;
Bone Marrow
;
Cell Movement
;
Granulocyte Colony-Stimulating Factor
;
Granulocyte-Macrophage Colony-Stimulating Factor
;
In Vitro Techniques
;
Mesenchymal Stromal Cells
;
Rats
;
RNA, Small Interfering
;
Stromal Cells
5.Auditory Deficits in Patients With Mild and Moderate Obstructive Sleep Apnea Syndrome: A Speech Syllable Evoked Auditory Brainstem Response Study
Qiuyang FU ; Tao WANG ; Yong LIANG ; Yong LIN ; Xiangdong ZHAO ; Jian WAN ; Suxiao FAN
Clinical and Experimental Otorhinolaryngology 2019;12(1):58-65
OBJECTIVES: The energy consumption process of cochlea and neural signal transduction along the auditory pathway are highly dependent on blood oxygen supply. At present, it is under debate on whether the obstructive sleep apnea syndrome (OSAS) would affect the auditory function since the patients suffer from low oxygen saturation. Moreover, it is difficult to detect the functional state of auditory in less severe stage of OSAS. Recently, speech-evoked auditory brainstem response (speech-ABR) has been reported to be a new electrophysiological tool in characterizing the auditory dysfunction. The aim of the present study is to evaluate the auditory processes in adult patients with mild and moderate OSAS by speech-ABR. METHODS: An experimental group of 31 patients with mild to moderate OSAS, and a control group without OSAS diagnosed by apnea hypopnea index in polysomnogram were recruited. All participants underwent otologic examinations and tests of pure-tone audiogram, distortion product otoacoustic emissions, click-evoked auditory brainstem response (click-ABR) and speech-ABR, respectively. RESULTS: The results of pure-tone audiogram, distortion product otoacoustic emissions, and click-ABR in OSAS group showed no significant differences compared with the control group (P>0.05). Speech-ABRs for OSAS participants and controls showed similar morphological waveforms and typical peak structures. There were significant group differences for the onset and offset transient peaks (P < 0.05), where OSAS group had longer latencies for peak V (6.69± 0.33 ms vs. 6.39±0.23 ms), peak C (13.48±0.30 ms vs. 13.31±0.23 ms), and peak O (48.27±0.39 ms vs. 47.60± 0.40 ms) compared to the control group. The latency of these peaks showed significant correlations with apnea hypopnea index for peak V (r=0.37, P=0.040), peak C (r=0.36, P=0.045), as well as peak O (r=0.55, P=0.001). CONCLUSION: These findings indicate that some auditory dysfunctions may be present in patients with mild and moderate OSAS, and the damages were aggravated with the severity of OSAS, which suggests that speech-ABR may be a potential biomarker in the diagnosis and evaluation at early stage of OSAS.
Adult
;
Anoxia
;
Apnea
;
Auditory Pathways
;
Cochlea
;
Diagnosis
;
Evoked Potentials, Auditory, Brain Stem
;
Humans
;
Oxygen
;
Polysomnography
;
Signal Transduction
;
Sleep Apnea, Obstructive
6.Differential Effects of Pentoxifylline on Learning and Memory Impairment Induced by Hypoxic-ischemic Brain Injury in Rats
Hülya HALIS ; Soner BITIKTAŞ ; Osman BAŞTUĞ ; Burak TAN ; Sehrazat KAVRAAL ; Tamer GÜNEŞ ; Cem SÜER
Clinical Psychopharmacology and Neuroscience 2019;17(3):388-399
OBJECTIVE: Hypoxic-ischemic (HI) brain injury in the human perinatal period often leads to significant long-term neurobehavioral dysfunction in the cognitive and sensory-motor domains. Using a neonatal HI injury model (unilateral carotid ligation followed by hypoxia) in postnatal day seven rats, the present study investigated the long-term effects of HI and potential behavioral protective effect of pentoxifylline. METHODS: Seven-day-old rats underwent right carotid ligation, followed by hypoxia (FiO2 = 0.08). Rats received pentoxifylline immediately after and again 2 hours after hypoxia (two doses, 60–100 mg/kg/dose), or serum physiologic. Another set of seven-day-old rats was included to sham group exposed to surgical stress but not ligated. These rats were tested for spatial learning and memory on the simple place task in the Morris water maze from postnatal days 77 to 85. RESULTS: HI rats displayed significant tissue loss in the right hippocampus, as well as severe spatial memory deficits. Low-dose treatment with pentoxifylline resulted in significant protection against both HI-induced hippocampus tissue losses and spatial memory impairments. Beneficial effects are, however, negated if pentoxifylline is administered at high dose. CONCLUSION: These findings indicate that unilateral HI brain injury in a neonatal rodent model is associated with cognitive deficits, and that low dose pentoxifylline treatment is protective against spatial memory impairment.
Animals
;
Anoxia
;
Brain Injuries
;
Brain
;
Cognition Disorders
;
Hippocampus
;
Humans
;
Hypoxia-Ischemia, Brain
;
Learning
;
Ligation
;
Memory
;
Pentoxifylline
;
Rats
;
Rodentia
;
Spatial Learning
;
Spatial Memory
;
Water
7.Mitochondrial Dysfunction in Adipocytes as a Primary Cause of Adipose Tissue Inflammation
Chang Yun WOO ; Jung Eun JANG ; Seung Eun LEE ; Eun Hee KOH ; Ki Up LEE
Diabetes & Metabolism Journal 2019;43(3):247-256
Adipose tissue inflammation is considered a major contributing factor in the development of obesity-associated insulin resistance and cardiovascular diseases. However, the cause of adipose tissue inflammation is presently unclear. The role of mitochondria in white adipocytes has long been neglected because of their low abundance. However, recent evidence suggests that mitochondria are essential for maintaining metabolic homeostasis in white adipocytes. In a series of recent studies, we found that mitochondrial function in white adipocytes is essential to the synthesis of adiponectin, which is the most abundant adipokine synthesized from adipocytes, with many favorable effects on metabolism, including improvement of insulin sensitivity and reduction of atherosclerotic processes and systemic inflammation. From these results, we propose a new hypothesis that mitochondrial dysfunction in adipocytes is a primary cause of adipose tissue inflammation and compared this hypothesis with a prevailing concept that “adipose tissue hypoxia” may underlie adipose tissue dysfunction in obesity. Recent studies have emphasized the role of the mitochondrial quality control mechanism in maintaining mitochondrial function. Future studies are warranted to test whether an inadequate mitochondrial quality control mechanism is responsible for mitochondrial dysfunction in adipocytes and adipose tissue inflammation.
11-beta-Hydroxysteroid Dehydrogenases
;
Adipocytes
;
Adipocytes, White
;
Adipokines
;
Adiponectin
;
Adipose Tissue
;
Anoxia
;
Cardiovascular Diseases
;
Homeostasis
;
Inflammation
;
Insulin Resistance
;
Metabolism
;
Mitochondria
;
Nitric Oxide
;
Obesity
;
Quality Control
8.Low-Frequency Intermittent Hypoxia Suppresses Subcutaneous Adipogenesis and Induces Macrophage Polarization in Lean Mice
Yan WANG ; Mary Yuk Kwan LEE ; Judith Choi Wo MAK ; Mary Sau Man IP
Diabetes & Metabolism Journal 2019;43(5):659-674
BACKGROUND: The relationship between obstructive sleep apnoea (OSA) and metabolic disorders is complex and highly associated. The impairment of adipogenic capacity in pre-adipocytes may promote adipocyte hypertrophy and increase the risk of further metabolic dysfunction. We hypothesize that intermittent hypoxia (IH), as a pathophysiologic feature of OSA, may regulate adipogenesis by promoting macrophage polarization. METHODS: Male C57BL/6N mice were exposed to either IH (240 seconds of 10% O₂ followed by 120 seconds of 21% O₂, i.e., 10 cycles/hour) or intermittent normoxia (IN) for 6 weeks. Stromal-vascular fractions derived from subcutaneous (SUB-SVF) and visceral (VIS-SVF) adipose tissues were cultured and differentiated. Conditioned media from cultured RAW 264.7 macrophages after air (Raw) or IH exposure (Raw-IH) were incubated with SUB-SVF during adipogenic differentiation. RESULTS: Adipogenic differentiation of SUB-SVF but not VIS-SVF from IH-exposed mice was significantly downregulated in comparison with that derived from IN-exposed mice. IH-exposed mice compared to IN-exposed mice showed induction of hypertrophic adipocytes and increased preferential infiltration of M1 macrophages in subcutaneous adipose tissue (SAT) compared to visceral adipose tissue. Complementary in vitro analysis demonstrated that Raw-IH media significantly enhanced inhibition of adipogenesis of SUB-SVF compared to Raw media, in agreement with corresponding gene expression levels of differentiation-associated markers and adipogenic transcription factors. CONCLUSION: Low frequency IH exposure impaired adipogenesis of SAT in lean mice, and macrophage polarization may be a potential mechanism for the impaired adipogenesis.
Adipocytes
;
Adipogenesis
;
Animals
;
Anoxia
;
Culture Media, Conditioned
;
Gene Expression
;
Humans
;
Hypertrophy
;
In Vitro Techniques
;
Inflammation
;
Intra-Abdominal Fat
;
Macrophages
;
Male
;
Mice
;
Subcutaneous Fat
;
Transcription Factors
9.Neuregulin 1/ErbB4 signaling attenuates neuronal cell damage under oxygen-glucose deprivation in primary hippocampal neurons
Ji Young YOO ; Han Byeol KIM ; Seung Yeon YOO ; Hong Il YOO ; Dae Yong SONG ; Tai Kyoung BAIK ; Jun Ho LEE ; Ran Sook WOO
Anatomy & Cell Biology 2019;52(4):462-468
Anoxia
;
Brain
;
Brain Ischemia
;
Cell Death
;
Cognition
;
Hippocampus
;
Ischemia
;
Neuregulin-1
;
Neurons
;
Neuroprotection
;
Neuroprotective Agents
10.Adverse events of conscious sedation using midazolam for gastrointestinal endoscopy
Jeeyoung JUN ; Jong In HAN ; Ae Lee CHOI ; Youn Jin KIM ; Jong Wha LEE ; Dong Yeon KIM ; Minjin LEE
Anesthesia and Pain Medicine 2019;14(4):401-406
BACKGROUND: This study was conducted to identify the types and incidence of adverse events associated with midazolam, which is the most widely used drug to induce conscious sedation during gastrointestinal endoscopy, and to analyze the factors associated with hypoxemia and sedation failure.METHODS: Of 87,740 patients who underwent gastrointestinal endoscopy between February 2015 and May 2017, the electronic medical records of 335 who reportedly developed adverse events were retrospectively reviewed, and analysis was performed to determine the risk factors for hypoxemia and sedation failure, the two most frequent adverse events among those manifested during gastrointestinal endoscopy.RESULTS: The overall adverse event rate was 0.38% (n = 335); hypoxemia was most frequent, accounting for 40.7% (n = 90), followed by sedation failure (34.8%, n = 77), delayed discharge from the recovery room (22.1%, n = 49), and hypotension (2.2%, n = 5). Compared with the control group, the hypoxemia group did not show any significant differences in sex and body weight, but mean age was significantly older (P < 0.001) and a significantly lower dose of midazolam was administered (P < 0.001). In the group with sedation failure, the mean rate was higher in men (P < 0.001) and a significantly higher dose of midazolam was administered (P < 0.001), but no age difference was found.CONCLUSIONS: Midazolam-based conscious sedation during gastrointestinal endoscopy can lead to various adverse events. In particular, as elderly patients are at higher risk of developing hypoxemia, midazolam dose adjustment and careful monitoring are required in this group.
Aged
;
Anoxia
;
Body Weight
;
Conscious Sedation
;
Electronic Health Records
;
Endoscopy, Gastrointestinal
;
Humans
;
Hypotension
;
Incidence
;
Male
;
Midazolam
;
Recovery Room
;
Retrospective Studies
;
Risk Factors

Result Analysis
Print
Save
E-mail