1.Preliminary study of gabapentin in the treatment of idiopathic ear fullness.
Tongxiang DIAO ; Qiuhong HAN ; Xin MA ; Yuanyuan JING ; Lin HAN ; Lisheng YU
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(3):214-222
Objective:Aural fullness(AF) is one of the common symptoms in ENT outpatient department, the incidence is about 1.4%. Some patients have an unknown etiology and are diagnosed as idiopathic ear congestion. In this paper, the therapeutic effect of gabapentin on some patients with idiopathic ear congestion was studied. Methods:Forty-eight cases of patients with ear distress as the main complaint between January 2024 and September 2024 were examined by questionnaire, specialist physical examination, pure tone audiometry and acoustic impedance. Among them, 19 cases were diagnosed with definite etiology, 29 cases were diagnosed with idiopathic ear congestion, and 7 cases were lost to follow-up in the idiopathic ear congestion group. Twenty-two patients were divided into the administration group(12 cases receiving regular gabapentin treatment for 3-6 weeks) and the control group(10 cases receiving no medication) based on whether they received gabapentin to explore the effect of ear congestion and possible related factors. Results:Among the 12 patients in the medication group, 2 cases of aural fullness disappeared completely, 9 cases had different degrees of relief, and 1 case had no relief Among the 10 patients in the control group, 2 patients' aural fullness disappeared, 1 patient consciously relieved, and the remaining 7 patients had no significant change in ear boredom. According to the Wong-baker Facial expression Scale, the score of ear tightness decreased from 2.83 before medication to 1.51 after medication in the medication group. The remission rate of ear congestion in the medication group was significantly higher than that in the control group(P=0.004). Conclusion:Gabapentin can be used to treat idiopathic aural fullness, which can reduce the symptoms effectively. This suggests that the occurrence of idiopathic aural fullness may be related to neuralgia and central sensitization.
Humans
;
Gabapentin/therapeutic use*
;
Amines/therapeutic use*
;
gamma-Aminobutyric Acid/therapeutic use*
;
Female
;
Male
;
Cyclohexanecarboxylic Acids/therapeutic use*
;
Ear Diseases/drug therapy*
;
Middle Aged
;
Adult
;
Aged
2.The advance of ω-transaminase in chiral amine biosynthesis in China from the perspective of patents.
Zhongxia LI ; Yan LIU ; Quan LUO ; Xuefeng LÜ
Chinese Journal of Biotechnology 2023;39(8):3169-3187
ω-transaminases are able to catalyze the reversible transfer of amino groups between diverse amino compounds (such as amino acids, alkyl amines, aromatic amines) and carbonyl compounds (such as aldehydes, ketones, ketoacids). ω-transaminases exhibit great application prospects in the field of chiral amine biosynthesis because of their desirable properties, such as wide range of substrates, high stereoselectivity, and mild catalytic conditions. It is therefore important for China to develop efficient, specific, and environment-friendly chiral amine production technologies with independent intellectual property rights, which is of great significance for the development of pharmaceutical, pesticide, and material industries. This review systematically summarizes the Chinese patents regarding ω-transaminase filed by Chinese institutions in the recent decade. The development of ω-transaminase resource, enzymatic property improvement by protein engineering, application in chiral amine synthesis, and development of production technologies are elaborated. This review will shed light on further basic and application studies of ω-transaminase.
Transaminases/genetics*
;
Amino Acids
;
China
;
Aldehydes
;
Amines
3.Semi-rational evolution of ω-transaminase from Aspergillus terreus for enhancing the thermostability.
Tingting CAI ; Jiaren CAO ; Shuai QIU ; Changjiang LYU ; Fangfang FAN ; Sheng HU ; Weirui ZHAO ; Lehe MEI ; Jun HUANG
Chinese Journal of Biotechnology 2023;39(6):2126-2140
ω-transaminase (ω-TA) is a natural biocatalyst that has good application potential in the synthesis of chiral amines. However, the poor stability and low activity of ω-TA in the process of catalyzing unnatural substrates greatly hampers its application. To overcome these shortcomings, the thermostability of (R)-ω-TA (AtTA) from Aspergillus terreus was engineered by combining molecular dynamics simulation assisted computer-aided design with random and combinatorial mutation. An optimal mutant AtTA-E104D/A246V/R266Q (M3) with synchronously enhanced thermostability and activity was obtained. Compared with the wild- type (WT) enzyme, the half-life t1/2 (35 ℃) of M3 was prolonged by 4.8-time (from 17.8 min to 102.7 min), and the half deactivation temperature (T1050) was increased from 38.1 ℃ to 40.3 ℃. The catalytic efficiencies toward pyruvate and 1-(R)-phenylethylamine of M3 were 1.59- and 1.56-fold that of WT. Molecular dynamics simulation and molecular docking showed that the reinforced stability of α-helix caused by the increase of hydrogen bond and hydrophobic interaction in molecules was the main reason for the improvement of enzyme thermostability. The enhanced hydrogen bond of substrate with surrounding amino acid residues and the enlarged substrate binding pocket contributed to the increased catalytic efficiency of M3. Substrate spectrum analysis revealed that the catalytic performance of M3 on 11 aromatic ketones were higher than that of WT, which further showed the application potential of M3 in the synthesis of chiral amines.
Transaminases/chemistry*
;
Molecular Docking Simulation
;
Amines/chemistry*
;
Pyruvic Acid/metabolism*
;
Enzyme Stability
4.Research progress on the immunomodulatory effects and mechanisms of trace amine-associated receptor 1.
Xian-Qiang ZHANG ; Ji-Tao LI ; Tian-Mei SI ; Yun-Ai SU
Acta Physiologica Sinica 2023;75(2):248-254
Trace amines are endogenous molecules distributed in the central nervous system and peripheral tissues that resemble common biogenic amines in terms of subcellular localization, chemical structure, and metabolism. Trace amine-associated receptor (TAAR) is a kind of evolutionarily conserved G-protein-coupled receptors in vertebrates, in which TAAR1 is a functional regulator of monoamine transmitters such as dopamine and serotonin. TAAR1 is widely considered as a potential therapeutic target for schizophrenia, depression and drug addiction. Moreover, TAAR1 is also expressed in peripheral tissues. The homeostasis imbalance of trace aminergic system can induce over-activation of peripheral immune system and central immune inflammatory response. TAAR1 modulators are becoming potential emerging drugs for the treatment of immune-related illnesses, because they may play a major role in the activation or modulation of immune response.
Animals
;
Humans
;
Receptors, G-Protein-Coupled/metabolism*
;
Biogenic Amines
;
Dopamine
;
Substance-Related Disorders
5.Structure Analysis of the Interfering Substance N-methyl-2-phenylpropan-1-amine of Methamphetamine in Wastewater.
Ting-Ting ZHANG ; Yu HUANG ; Xue-Jun ZHANG ; Jie CHEN ; Zhen-Dong HUA
Journal of Forensic Medicine 2022;38(6):726-732
OBJECTIVES:
To analyze the chemical structure of the interfering substance that affects the result of methamphetamine analysis in wastewater.
METHODS:
A combination of GC-MS and liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) was used to analyze the mass spectrum characteristics of the interfering substance that affects the result of methamphetamine analysis and to infer its possible structure. Liquid chromatography-triple quadrupole-mass spectrometry (LC-TQ-MS) was used to confirm the control material.
RESULTS:
Using LC-QTOF-MS in positive electrospray ionization (ESI+) mode, the mass-to-charge ratio (m/z) of quasi-molecular ion in the MS1 mass spectrometry of interfering substance was identical to that of methamphetamine, indicating that the interfering substance was probably an isomer of methamphetamine. The MS2 mass spectra obtained at three collision energies of 15 V, 30 V and 45 V were highly similar to methamphetamine, suggesting that the interfering substance contained methylamino and benzyl groups. Further analysis using GC-MS in electron impact (EI) ionization mode showed that the base peak in the mass spectrum of the interfering substance was at m/z 44. The interfering substance was confirmed to be N-methyl-2-phenylpropan-1-amine by compared with the standard reference.
CONCLUSIONS
The chemical structure of N-methyl-2-phenylpropan-1-amine is highly similar to methamphetamine, which is easy to cause interference for the detection of trace amounts of methamphetamine in wastewater using LC-TQ-MS. Therefore, in the actual analysis, the chromatographic retention time can be used to distinguish between N-methyl-2-phenylpropan-1-amine and methamphetamine.
Methamphetamine
;
Wastewater
;
Amines
;
Gas Chromatography-Mass Spectrometry/methods*
;
Mass Spectrometry/methods*
;
Spectrometry, Mass, Electrospray Ionization/methods*
6.Fusion expression with catalase improves the stability of multicopper oxidase and its efficiency in degrading biogenic amines.
Chinese Journal of Biotechnology 2021;37(12):4382-4394
Some enzymes belonging to the multicopper oxidase (MCO) family can degrade the hazardous biogenic amine (BA) present in food. However, the oxidation of MCO in the process of degrading BAs may reduce its activity and stability, resulting in decreased catalytic efficiency. In this work, an MCO from Lactobacillus fermentum (MCOF) was fused with a Bacillus subtilis catalase (CAT) using different strategies and the fusion enzymes were respectively expressed in Escherichia coli BL21(DE3). The tolerance of eight fused MCOFs to H2O2 increased by 51%-68%, and the stability of CAT&MCOF increased by 17%, compared to the wild type MCOF. Using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) as a substrate, the substrate affinity (Km), the catalytic efficiency (kcat/Km) and the molar specific activity of CAT&MCOF increased by 1.0-fold, 1.7-fold and 1.2-fold than those of MCOF, respectively. The stability of CAT&MCOF under acidic conditions (pH 2.5-4.5) and moderate temperatures (35-55 °C) also improved. Moreover, the degradation rates of putrescine, cadaverine and histamine catalyzed by CAT&MCOF reached 31.7%, 36.0% and 57.8%, respectively, which increased by 132.5%, 45.7% and 38.9% compared to that of MCOF. The improvement on the stability and catalytic efficiency of MCOF by fusion expression with CAT provides a good example for improving the applicability of enzymes through molecular modifications.
Biogenic Amines
;
Cadaverine
;
Catalase/genetics*
;
Escherichia coli/genetics*
;
Hydrogen Peroxide
7.Research progress on the biomimetic remineralization of hard tooth tissues based on polyamide-amine dendrimer.
Ke-Zhen XIANG ; Liang CHEN ; De-Qin YANG
West China Journal of Stomatology 2020;38(6):692-696
Polyamide-amine (PAMAM) dendrimer, a new hyperbranched macromolecular polymer, is considered an "artificial protein" by many scholars on account of its excellent chemical and biological characteristics. PAMAM has internal cavities and a large number of reactive terminal groups. These structures allow the polymer to be used as a bionic macromoleculethat could simulate the biomimetic mineralization of the natural organic matrix on the surface of tooth tissue. Specifically, PAMAM can beused as an organic template to regulate mineral nucleation and crystal growth; thus, the polymerisa more ideal dental restoration material than traditional allogenic materials. This article reviews research progress on thePAMAM-induced biomimetic mineralization of hard tooth tissues.
Amines
;
Biomimetics
;
Dendrimers
;
Humans
;
Nylons
;
Tooth Remineralization
8.Inhibition of chemotherapy-related breast tumor EMT by application of redox-sensitive siRNA delivery system CSO-ss-SA/siRNA along with doxorubicin treatment.
Xuan LIU ; Xue-Qing ZHOU ; Xu-Wei SHANG ; Li WANG ; Yi LI ; Hong YUAN ; Fu-Qiang HU
Journal of Zhejiang University. Science. B 2020;21(3):218-233
Metastasis is one of the main reasons causing death in cancer patients. It was reported that chemotherapy might induce metastasis. In order to uncover the mechanism of chemotherapy-induced metastasis and find solutions to inhibit treatment-induced metastasis, the relationship between epithelial-mesenchymal transition (EMT) and doxorubicin (DOX) treatment was investigated and a redox-sensitive small interfering RNA (siRNA) delivery system was designed. DOX-related reactive oxygen species (ROS) were found to be responsible for the invasiveness of tumor cells in vitro, causing enhanced EMT and cytoskeleton reconstruction regulated by Ras-related C3 botulinum toxin substrate 1 (RAC1). In order to decrease RAC1, a redox-sensitive glycolipid drug delivery system (chitosan-ss-stearylamine conjugate (CSO-ss-SA)) was designed to carry siRNA, forming a gene delivery system (CSO-ss-SA/siRNA) downregulating RAC1. CSO-ss-SA/siRNA exhibited an enhanced redox sensitivity compared to nonresponsive complexes in 10 mmol/L glutathione (GSH) and showed a significant safety. CSO-ss-SA/siRNA could effectively transmit siRNA into tumor cells, reducing the expression of RAC1 protein by 38.2% and decreasing the number of tumor-induced invasion cells by 42.5%. When combined with DOX, CSO-ss-SA/siRNA remarkably inhibited the chemotherapy-induced EMT in vivo and enhanced therapeutic efficiency. The present study indicates that RAC1 protein is a key regulator of chemotherapy-induced EMT and CSO-ss-SA/siRNA silencing RAC1 could efficiently decrease the tumor metastasis risk after chemotherapy.
Amines/chemistry*
;
Antineoplastic Agents/adverse effects*
;
Breast Neoplasms/pathology*
;
Chitosan/chemistry*
;
Doxorubicin/adverse effects*
;
Drug Delivery Systems
;
Epithelial-Mesenchymal Transition/drug effects*
;
Female
;
Humans
;
MCF-7 Cells
;
Neoplasm Metastasis/prevention & control*
;
Oxidation-Reduction
;
RNA, Small Interfering/administration & dosage*
;
Reactive Oxygen Species/metabolism*
;
rac1 GTP-Binding Protein/physiology*
9.Dental remineralization via poly(amido amine) and restorative materials containing calcium phosphate nanoparticles.
Kunneng LIANG ; Suping WANG ; Siying TAO ; Shimeng XIAO ; Han ZHOU ; Ping WANG ; Lei CHENG ; Xuedong ZHOU ; Michael D WEIR ; Thomas W OATES ; Jiyao LI ; Hockin H K XU
International Journal of Oral Science 2019;11(2):15-15
Tooth decay is prevalent, and secondary caries causes restoration failures, both of which are related to demineralization. There is an urgent need to develop new therapeutic materials with remineralization functions. This article represents the first review on the cutting edge research of poly(amido amine) (PAMAM) in combination with nanoparticles of amorphous calcium phosphate (NACP). PAMAM was excellent nucleation template, and could absorb calcium (Ca) and phosphate (P) ions via its functional groups to activate remineralization. NACP composite and adhesive showed acid-neutralization and Ca and P ion release capabilities. PAMAM+NACP together showed synergistic effects and produced triple benefits: excellent nucleation templates, superior acid-neutralization, and ions release. Therefore, the PAMAM+NACP strategy possessed much greater remineralization capacity than using PAMAM or NACP alone. PAMAM+NACP achieved dentin remineralization even in an acidic solution without any initial Ca and P ions. Besides, the long-term remineralization capability of PAMAM+NACP was established. After prolonged fluid challenge, the immersed PAMAM with the recharged NACP still induced effective dentin mineral regeneration. Furthermore, the hardness of pre-demineralized dentin was increased back to that of healthy dentin, indicating a complete remineralization. Therefore, the novel PAMAM+NACP approach is promising to provide long-term therapeutic effects including tooth remineralization, hardness increase, and caries-inhibition capabilities.
Amines
;
pharmacology
;
Calcium
;
Calcium Phosphates
;
chemistry
;
pharmacology
;
Dentin
;
chemistry
;
Humans
;
Nanocomposites
;
chemistry
;
Nanoparticles
;
Tooth Remineralization
;
methods
10.Expression and characterization of a multicopper oxidase from Lactobacillus fermentum.
Chinese Journal of Biotechnology 2019;35(7):1286-1294
Biogenic amines (BAs) are low molecular weight organic compounds that present in fermented foods. Large amount of ingested biogenic amines can cause allergy or significant symptoms. Reduction of BAs by enzymatic reaction in fermented foods is one of the most efficient methods for removal of biohazard compounds and assurance food safety. In this study, the multicopper oxidase (MCO) gene in the genome of Lactobacillus fermentum was successfully cloned in Escherichia coli BL21 and expressed at 484 U/L. The recombinant MCO was purified by the immobilized metal affinity chromatography method. The optimal reaction temperature and pH for this enzyme was detected to be 50 °C and 3.5. The Km and Vmax values of the recombinant MCO was determined to be 1.30 mmol/L and 7.67×10⁻² mmol/(L·min). Moreover, this MCO dramatically degrades histamine and tyramine by 51.6% and 40.9%, and can degrade other BAs including tryptamine, phenylethylamine, putrescine, cadaverine and spermidine, and was found to be tolerant to 18% (W/V) NaCl. The recombinant MCO is also capable of degrading BAs in soy sauce. The degradation rate of total BAs in soy sauce reaches 10.6% though a relatively low level of enzyme (500 U/L) is used. Multicopper oxidase has the potential to degrade biogenic amines in fermented foods, which lays a foundation for the further application of this kind of food enzymes.
Biogenic Amines
;
Cadaverine
;
Escherichia coli
;
Lactobacillus fermentum
;
Oxidoreductases

Result Analysis
Print
Save
E-mail