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Objective  To construct symptom-formula-herb heterogeneous graphs structured Treatise on
Febrile Diseases (Shang Han Lun,《伤寒论》) dataset and explore an optimal learning meth-
od represented with node attributes based on graph convolutional network (GCN).
Methods  Clauses that contain symptoms, formulas, and herbs were abstracted from Treatise
on  Febrile  Diseases to  construct  symptom-formula-herb  heterogeneous  graphs,  which  were
used  to  propose  a  node  representation  learning  method  based  on  GCN  −  the  Traditional
Chinese Medicine  Graph  Convolution  Network  (TCM-GCN).  The  symptom-formula,  symp-
tom-herb,  and  formula-herb  heterogeneous  graphs  were  processed  with  the  TCM-GCN  to
realize  high-order  propagating  message  passing  and  neighbor  aggregation  to  obtain  new
node representation  attributes,  and  thus  acquiring  the  nodes’  sum-aggregations  of  symp-
toms,  formulas,  and  herbs  to  lay  a  foundation  for  the  downstream  tasks  of  the  prediction
models.
Results  Comparisons among the node representations with multi-hot encoding, non-fusion
encoding,  and fusion encoding showed that  the Precision@10,  Recall@10,  and F1-score@10
of  the  fusion  encoding  were  9.77%,  6.65%,  and  8.30%,  respectively,  higher  than  those  of  the
non-fusion encoding in the prediction studies of the model.
Conclusion  Node representations by  fusion encoding achieved comparatively  ideal  results,
indicating the TCM-GCN is effective in realizing node-level representations of heterogeneous
graph structured Treatise on Febrile Diseases dataset and is able to elevate the performance of
the downstream tasks of the diagnosis model.

 
 1 Introduction

Treatise on Febrile Diseases (Shang Han Lun,《伤寒论》)
is  the  first  clinical  work on medical  theories,  treatments,
prescriptions,  and  herbs  that  integrates  theories  with
practices in  China,  a  crowning  achievement  in  the  his-
tory of traditional Chinese medicine (TCM) development

and a classic book with great value. Therefore, a TCM dia-
gnosis-assisting  intelligent  system  based  on Treatise  on
Febrile Diseases is also of important significance. The key
to  the  TCM  diagnosis-assisting  intelligent  system  is  the
efficient  expressiveness  of  TCM  knowledge,  such  as
Treatise on Febrile Diseases, whose attributes that include
complicated  semantics  have  created  barriers  for  the
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knowledge to be understood.
Knowledge  representation  is  widely  applied  in  TCM

field. Normally,  experts  tend  to  adopt  rules-based  tech-
nology  of  knowledge  representation  to  systematically
study Treatise  on Febrile  Diseases [1, 2]. As  machine learn-
ing becomes  a  trending  topic,  natural  language  pro-
cessing (NLP)  has  been  gradually  employed  in  the  stud-
ies  of  the  expressiveness  of Treatise  on  Febrile  Diseases
and the like TCM knowledge [3-5]. Over the past few years,
knowledge graph has also been used in TCM expressive-
ness studies [6-9]. Graph convolutional network (GCN) is a
graph-based deep  learning  method  with  powerful  capa-
cities  fitting  for  node  semantic  representation  learning,
assisted  with  complicated  graph  networks.  The  graph
neural network  (GNN)  or  GCN  has  thus  started  its  jour-
ney  in  herb  recommendation  because  of  its  powerful
graph  representation  capacity [10-12].  Syndrome-aware
multi-graph  convolution  network  (SMGCN) [11] model,
after  being  fused  with  related  symptom  embeddings,
could generate a generalized TCM syndrome representa-
tion  system.  With  this  model,  the  process  of  physicians
revealing TCM  syndromes  could  be  simulated  to  con-
struct a  symptom-symptom  graph  for  capturing  the  co-
operative relations among the symptoms,  along with the
symptom-herb graph, has been taken to build a GCN for
symptom embedding learning and a  herb recommenda-
tion  system,  with  ideal  outcomes  having  being  yielded.
Inspired by the SMGCN model and how it  interacts with
symptom and herb node representations,  we introduced
GCN  to  address  the  expressiveness  issues  of Treatise  on
Febrile  Diseases.  The  clauses  in Treatise on  Febrile  Dis-
eases include  symptoms,  formulas,  and  herb  entities.  All
selected  to  construct  a  complicated  GCN  in  which  the
symptoms are in the match with formulas, so as to trans-
form the murky expressiveness of Treatise on Febrile Dis-
eases into graph representations. A classic heterogeneous
graph is  made up of  nodes with their  own attributes,  i.e.
containing different symptoms, formulas, and herbs mes-
sages.

In the study, a TCM-GCN model was proposed based
on the original GCN for the representation learning of the
heterogeneous  graph  structured Treatise on  Febrile  Dis-
eases message,  including  symptom-formula,  symptom-
herb, and  formula-herb  graphs,  and  for  integrating  cor-
responding node representation to acquire new node at-
tributes  that  contain  plenty  of  structured  messages.  The
model  was  tested  using  a Treatise  on  Febrile  Diseases
based  dataset,  which  yielded  comparatively  ideal  results
and laid  a  foundation  for  the  architecture  of  a  TCM  dia-
gnosis and treatment intelligent system.

 2 Related work

 2.1 Graph representations

A graph representation method is to transform the data in
a graph into low-dimensional vectors to get prepared for

machine  learning [13].  The  method  at  the  same  time  can
be used to better analyze the relationships among nodes
in  a  complex  network [14].  GCN  is  primarily  used  to  do
graph data convolutions using spectral or space methods.
In  terms  of  the  spectral  method,  it  is  normally  used  to
define the convolutions of the graph structured data in a
spectral  domain,  and  then  transfer  the  defined  data  to  a
space  domain [15].  GCN  is  a  typical  example  of  using  the
spectral method. For the space method, the convolutions
are  defined  in  a  space  directly.  The  general  idea  for  the
method is to aggregate the message of neighboring nodes
to  update  the  central  node  representation [16]. Graph  at-
tention network (GAT) is a classic example of the applica-
tion of this method.

Currently, only a handful of studies have been carried
out on learning representations of Treatise on Febrile Dis-
eases based  on  graphs,  but  some  have  been  done  on
knowledge  representation  in  medication [17-20] and  TCM
herb  recommendations [10-12]. In  these  studies,  research-
ers  have  represented  and  learned  the  symptoms  and
herbs in a case record using GNN to target tasks on herb
or  drug  recommendation.  Such  as  the  SMGCN  model,
which constructed  a  symptom-symptom  graph  for  cap-
turing the cooperative relations between symptoms,  and
was  used  along  with  a  symptom-herb  graph  to  build  a
new GCN  for  learning  symptom  embeddings,  a  signific-
ant  improvement  in  herb  recommendations  compared
with traditional approaches [11]. Multi-graph convolution-
al  network  (MGCN),  another  herb  recommendation
model based  on  multi-graph  convolutions,  was  com-
posed of pooled modules and herb prediction models [12].
MGN applied state elements and the central node of syn-
dromes  to  achieve  treatments  based  on  syndrome.
However,  the  model  was  limited  in  its  use  because  the
state  elements  and  syndrome  data  were  hard  to  obtain.
Syndrome-aware  KG-enhanced  attentive  multi-graph
neural network  (KG-ASMGNN)  included  TCM  know-
ledge  schematics  to  enrich  the  inputted  corpora,  which
raised  the  quality  of  learning  representations [21]. Know-
ledge-driven herb  recommendation  (KDHR)  was  an  ap-
proach  driving  herb  recommendation  with  the  use  of
multi-layer message fusion based on GCN [22]. This model,
assisted  by  the  addition  of  properties  of  herbs,  ideally
represented the characteristics of the herbs. To summar-
ize,  graph  representation  learning  can  be  used  to  obtain
the  structured  potential  information  in  TCM  text  as  well
as its  full  semantics.  Therefore,  high-quality  vector  rep-
resentations  of Treatise  on  Febrile  Diseases text  could  be
realized  via  graph  learning,  thus  significantly  improving
the performance of the downstream tasks.

 2.2 GCN techniques

GCN is  a  multi-layer  neural  network  that  is  fit  for  pro-
cessing  the  non-euclidean  structure  data  via  capturing
their  attributes  at  node  level,  graph  level,  and  through
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edge  prediction.  The  key  to  processing  graph  structured
data is how to express the non-euclidean ones. We there-
fore would like  to  introduce Graph Embedding,  the pur-
pose  of  which  is  to  transform  each  node  in  the  given
graph into a low-dimensional vector representation, nor-
mally  realized  by  approaches  such  as  Deepwalk  or
Node2vec.  Such  a  vector  representation  is  also  called
Node Embedding.  As  neural  network technologies  grow,
GCN,  GAT,  GraphSAGE,  PinSage,  and  the  like  methods
have become  the  mainstream  for  node  embedding  rep-
resentation learning [15, 16, 23-25].

For a  multi-layer  GCN,  Equation  (1)  shows  the  mes-
sage passing rule among the middle layers.

H(l+1) = σ(D̃−
1
2 ÃD̃−

1
2 H(l)W (l)) (1)

Ã = A+ I
D̃

Ã H(l) W (l)

σ(·)
H(l+1) (l+1)

Among which  represents the adjacency mat-
rix A plus the identity matrix I in graph G;  is the degree
matrix of ,  is the attribute matrix in layer l,  is the
weighted matrix also in layer l,  is the activation func-
tion,  is  the  updated  attribute  matrix  in  layer .
The procedure of GCN propagation is as follows.

D̃−
1
2 ÃD̃−

1
2 H(l)

(i) Message passing among node attributes according

to .

σ(D̃−
1
2 ÃD̃−

1
2 H(l)W (l))(ii)  Aggregating every node using ,

i.e. a linear transformation and activation.

H(L)

(iii)  Realizing  multi-layer  GCN  by  repeating  steps  (i)
and  (ii) L times,  and  obtaining  the  final  as  the  final
node representation,  which  can  be  sent  to  the  down-
stream tasks.

GCN  has  a  powerful  fitting  capacity,  which  can  also
rise to gain a filter capacity of a higher-order polynomial
frequency  response  function.  GCN  has  simplified  the
learning ability  of  each  layer  and  improved  the  express-
iveness of  each  element  via  deep  learning,  which  pos-
sesses  engineering  advantages.  Therefore,  GCN  based
models  have  become  researchers’  first  choices  when  it
comes to performing learning tasks using graphs.

 3 Methods

 3.1 Heterogeneous graph architecture of Treatise on Feb-
rile Diseases

 3.1.1 Definition of  graph representation　Each clause in
Treatise on Febrile Diseases is a medical case record, such

as Clause 12, saying “the pulse of initial Yang febrile dis-
ease  caused  by  wind  is  floating  when  felts  at  the  surface
and weak in depth.  Floating at  the surface signifies heat.
Weak in  depth  signifies  spontaneous  perspiration.  Pre-
scribe Guizhi Tang (桂枝汤) when the patients feels chill
and fears, uneasy because of a fever, nauseous, and with
a tendency to snore, etc.”. These messages apparently of-
fer the results of the four diagnostic methods, which are a
slight chill  feeling, aversion to wind, fever, running nose,
nausea,  and  pulse  floating  at  the  surface.  To  treat  these
symptoms,  the  author  of Treatise  on  Febrile  Diseases
ZHANG Zhongjing applied the Guizhi  Tang,  a  treatment
with significant outcomes (Table 1).

In  the  intelligent  model  for  syndrome  differentiation
of the six meridians based on Treatise on Febrile Diseases,
the clauses in the book were deemed as medical case re-
cords, and each clause is one medical case record that in-
cludes  several  symptoms,  one  formula,  and  some  herbs.
So each clause contains several sets of the three elements
(symptoms,  formulas,  and  herbs)  to  form  the  connec-
tivity among them. Edge was used to link such connectiv-
ity  and  construct  symptom-formula-herb  heterogeneous
graphs. All the clauses in Treatise on Febrile Diseases were
considered  as  a  set  of  TCM  cases,  which  were  all  used
to  construct  the  complicated  symptom-formula-herb
heterogeneous graphs, as shown in Figure 1 (because the
edges  are  numerous,  therefore  only  parts  of  them  that
connect symptoms, formulas, and herbs were drawn).

Then the text information was transformed into stan-
dard  symptom,  formula,  and  herb  sets,  with  each  node
representing  one  element:  a  symptom,  a  formula  or  a
herb. Edges  were  used  to  connect  the  nodes  and  con-
struct a  graph  representation  based  on  these  case  re-
cords for the next learning and prediction, ultimately ob-
taining a  prediction  model  for  TCM  diagnosis  and  treat-
ment. The prediction model was subject to learning from
the  TCM  case  records,  i.e.  inputting  all  symptoms,
formulas,  and  herbs  in  the  heterogeneous  graphs,  and
thus outputting predicted diagnosis results.

(i) Definition 1
S = {s1, s2, · · · , sM}Definition , S denotes for  all  symp-

tom sets, and M is the set size.
F = { f1, f2, · · · , fN}Defining , F stands  for  all  formula

sets, and N is the set size.

Table 1   Clause 12 in Treatise on Febrile Diseases

Symptom Syndrome Formula Herb

The pulse of initial Yang febrile disease caused
by wind is floating when felts at the surface and
weak in depth. Floating at the surface signifies
heat. Weak in depth signifies spontaneous
perspiration. When the patients feels chill and
fears, uneasy because of a fever, nauseous, and
with a tendency to snore

Wind-caused initial
Yang febrile syndrome
(Syndrome of
disharmony between
nutrient and defense
phases)

Guizhi
Tang

Guizhi (Cinnamomi Ramulus), 3 liang (one
Eastern Han liang is equivalent to 6.69 grams);
Shaoyao (Paeoniae Radix Alba), 3 liang;
Zhigancao (Prepared Glycyrrhizae Radix et
Rhizoma), 2 liang; Shengjiang (Zingiberis
Rhizoma Recens), 2 liang; Dazao (Jujubae
Fructus), 12 pcs

YAN Junfeng, et al. / Digital Chinese Medicine 5 (2022) 419-428 Heterogeneous graph construction and representation    421



H = {h1,h2, · · · ,hK}Defining , H denotes for all herb sets,
and K is the set size.

C = {c1,c2, · · · ,cJ}
c = ({s1, s2, · · · , si},

{ f1, f2, · · · , f j}, {h1,h2, · · · ,hk})

sc = {s1, s2, · · · , si}
f c = { f1, f2, · · · , f j}

hc = {h1,h2, · · · ,hk}

c = (sc, f c,hc)

Defining , C represents all  case  re-
cord sets,  and J is  the set  size.  Defining 

, c represents  a  case  record  in
the dataset, which is composed of subset S, subset F, and
subset H.  A case record has several symptoms, formulas,
and herbs, with  to represent the aggreg-
ations of the symptoms,  to represent the
aggregations of formulas, and  to repres-
ent the aggregations of herbs. So, a case record also rep-
resents as .

When the symptom subset sc is given, then the task of
the model is to calculate the probability f of formulas, and
the probability h of herbs for the treatment of sc,  where f
is  the N-dimensional  vector  of  the probabilities, N is  the
size of the formula aggregation F, and the value of vector f
in  dimension i denotes  for  the  probability  of  using  the
current formula to cure symptom sc subset; h is the K-di-
mensional vector, K is the size of the herb aggregation H,
the value of vector h in dimension i expresses the probab-
ility if using the current herb to cure symptom sc subset.

In order for the symptom, formula, and herb nodes in
the  heterogeneous  graph  to  be  learned  efficiently,  the
node  representation  learning  process  in  this  study  is
defined  as  follows  according  to  descriptions  in Figure  1
and Definition 1.

(ii) Definition 2
G = (V,E) ,V : {S ,F,H} ,

E: {s f , sh, f h}

si ∈ S f j ∈ F
si ∈ S

h j ∈ H

Giving  a  heterogeneous  graph 
 to  represent  the  symptom-formula-herb

heterogeneous  graph  is  given,  where V is  made  up  of
nodes S,  F,  and H,  among which S symbols the aggrega-
tion of  the symptom node s, F for the aggregation of  for-
mula  node f,  and H for  the  aggregation  of  herb  node h.
The edge sf  between the symptom and formula is express-
ed as (si, fj), where  and . The edge between the
symptom  and  herb  is  expressed  as  (si, hj),  where 
and .  The  edge  between  the  formula  and  herb  is

fi ∈ F h j ∈ Hexpressed as (fi, hj), where  and .

ES ∈ R|S |×ds |S |
ds

EF ∈ R|F|×d f |F|
d f

EH ∈ R|H|×dh |H|
dh

The heterogeneous graph G constructed using Treat-
ise  on  Febrile  Diseases text  and  node  attribute  sets X are
employed here to learn the symptom, formula,  and herb
node representations, ES, EF, EH, where ,  rep-
resents  the  size  of  symptom  aggregation,  is  the  final
value of the learned symptom node vector; , 
denotes for the size of formula aggregation,  is the final
value  of  the  learned  formula  node  vector; , 
stands for the size of herb aggregation,  is the final value
of the learned herb node vector. Moreover, G includes all
the  graph  structured  information  and  node  attributes.
And the representation learning of node V for symptoms,
formulas,  and  herbs  in  the  heterogeneous  graph  is  the
main focus of the study.

 3.1.2  Heterogeneous  graph  architecture　A  total  of  195
clauses  that  have  referred  to  descriptions  of  symptoms
and vital signs as well as the corresponding 112 formulas
were selected out of the 398 clauses in Treatise on Febrile
Diseases, whose descriptions of symptoms, formulas, and
herbs  were  extracted  by  TCM  professionals  after
proofreading. The  extracted  information  was  standard-
ized  in  accordance  with  the  latest  principles  from TCM
Syndrome Classification and the Code (GB/T 15657-2021)
published in China.

Each clause has one set  of  symptom, one of  formula,
and  one  of  herb.  The  symptom,  formula,  and  herb  sets
have appeared  in  the  same  clause.  Then  the  nodes  rep-
resenting  the  symptoms,  formulas,  and  herbs  in  each
clause were connected pair  by pair  with an edge to con-
struct  a  symptom-formula-herb  heterogeneous  network.
All  of  the  195  clauses  from Treatise  on  Febrile  Diseases
were processed this  way to ultimately  get  the whole het-
erogeneous graph of Treatise on Febrile Diseases.

Based  on  definitions  described  before,  clause  (case
record)  is  expressed  as c =  ({s1, s2,  ..., sm}, {f1, f2,  ..., fn},
{h1, h2, ..., hk}). Those symptoms, formulas, and herbs that
have  appeared  in  the  same  clause  were  connected  by
pair.  Therefore,  we  know  that  in  the  symptom-formula-
herb  heterogeneous  graph,  the  aggregation  of  edges
between symptoms and formulas is {(s1, f1), …, (s1, fn), …,
(sm, f1),  …,  (sm, fn)},  that  between symptoms and herbs is
{(s1, h1),  …,  (s1, hk),  …,  (sm, h1),  …,  (sm, hk)},  and  that
between formulas and herbs is {(f1, h1), …, (f1, hk), …, (fn,
h1),  …,  (fn, hk)}.  The  edges  are  un-directed.  Hence,  the
symptom-formula-herb  (S-F-H)  heterogeneous  graph  is
composed  of  three  heterogeneous  graphs,  graph  SF,  SH,
and FH. The edges in the graphs are defined as follows:

SFgraph =

{
1, i f

(
si, f j

)
co-occur in c

0, otherwise
(2)

(si, f j)SF  represents  the  symptom-formula  graph,  if 
appear in the same clause c, so they are connected if their
value is 1 and not if their value is 0.

 

... ......

Symptom node Herb node Formula node
Connection with nodes

... ...

Symptom set Formula set Herb set

 
Figure 1   A symptom-formula-herb heterogeneous graph
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SHgraph =

{
1, i f

(
si,h j

)
co-occur in c

0, otherwise
(3)

(si,h j)SH  represents  the  symptom-herb  graph,  if  ap-
pear  in  the  same  clause c,  so  they  are  connected  if  their
value is 1 and not if their value is 0.

FHgraph =

{
1, i f

(
fi,h j

)
co-occur in c

0, otherwise
(4)

( fi,h j)FH  represents the  formula-herb  graph,  if  ap-
pear  in  the  same  clause c,  so  they  are  connected  if  their
value is 1 and not if their value is 0.

Using the clause in Table 1 as an example,  the equa-
tion  for  the  clause  is c =  ({s1, s2, s3, s4, s5, s6},  {f1},  {h1, h2,
h3, h4, h5})  according  to  the  symptoms,  formulas,  and
herbs it contains. Subsequently, all the symptoms, formu-
las,  and  herbs  are  connected  with  an  edge.  As  a  result,
edges between symptom S,  formula F are {(s1, f1),  (s2, f1),
(s3, f1),  (s4, f1),  (s5, f1),  (s6, f1)},  those  between  formula F
and  herb H are  {(f1, h1),  (f1, h2),  (f1, h3),  (f1, h4),  (f1, h5)},
and  those  between  symptom S and  herb H are  {(s1, h1),
(s2, h1), (s3, h1), (s4, h1), (s5, h1), (s6, h1), (s1, h2), (s2, h2), (s3,
h2), (s4, h2), (s5, h2), (s6, h2), (s1, h3), (s2, h3), (s3, h3), (s4, h3),
(s5, h3), (s6, h3), (s1, h4), (s2, h4), (s3, h4), (s4, h4), (s5, h4), (s6,
h4),  (s1, h5),  (s2, h5),  (s3, h5),  (s4, h5),  (s5, h5),  (s6, h5)}.  All
edges  in  the  graph  are  undirected.  A  heterogeneous
graph, as shown in Figure 2, is thus constructed.

 

f1

s1

s2

s3

h1

h2

f1

s4

s5

s6

h3

h4

h5

Aversion to cold

Aversion to wind

Fever

Rhinorrhea

Retch

Weak pulse

Guizhi

Shaoyao

Shengjiang

Zhigancao

Dazao

Guizhi Tang

Symptom node Herb node Formula node

f1 The same nodef1Connection with nodes

 
Figure  2    The  heterogeneous  graph  for  Clause  12  in
Treatise on Febrile Diseases
 

According  to  the  definitions  in  this  section,  the  195
clauses  that  qualify  for  the  study  in Treatise  on  Febrile
Diseases were  processed  to  build  heterogeneous  graphs
SF,  SH,  and  FH,  which  are  together  made  up  the  whole
symptom-formula-herb heterogeneous graph (Figure 3).

 3.2 Heterogeneous  graph  representation  learning  of
Treatise on Febrile Diseases

 3.2.1 TCM-GCN learning model　The entity  vector  rep-
resentations  of  symptoms,  formulas,  and  herbs  are  the
foundation  for  predicting  the  downstream  tasks  in
intelligent  TCM  diagnosis,  whose  quality  directly

determines  the  performance  of  the  diagnosis  prediction
model.  In  the  following  parts  we  will  introduce  how  to
construct such a model of vector representation for high-
order connectivity  between  TCM  entities  and  their  het-
erogeneous  information.  We  proposed  the  TCM-GCN
model that used message passing and neighbor aggrega-
tion to  illustrate  the  learning  of  nodes  in  the  heterogen-
eous  graph.  Message  passing  and  neighbor  aggregation
are two guides on message passing that aggregate neigh-
boring  nodes  to  update  the  central  node  representation,
with which the convolutions have been applied for irreg-
ular  data  to  realize  the  connectivity  between  the  graph
and neural network.

Given that  symptoms,  formulas,  and herbs  were  rep-
resented  as  three  different  types  of  nodes,  so  they  were
divided  into  pairs  for  representation  learning.  Symptom
nodes  were  connected  with  formula  and  herb  nodes,  so
symptoms  were  represented  by  formula  nodes  in  graph
SF  and  herb  nodes  in  graph  SH.  Next,  the  two  learned
vectors  from  graphs  SF  and  SH  were  fused.  We  will  now
use  message  passing  and  neighbor  aggregation  of  the
TCM-GCN  model  to  specify  this  process,  as  shown  in
Figure 4.

{m f1 , · · · ,m fn}
{ f1, · · · , fn}

(i) The  graph  SF  and  its  attribute  matrix  were  input-
ted to create the message  of the adjacent for-
mula  nodes  for  each  symptom  node  in si the
graph. The initial nodes adopted multi-hot encoding.

(ii) The message was then passed and aggregated, and
the si node representation updated.

es f i

(iii)  Repeating  step  (ii)  for  carrying  out k-order
propagation  to  obtain  the  final  attribute  representation
vector  for node si (i.e. node embedding).

eshi

(iv) Graph SH underwent the same process as in steps
(i),  (ii),  and  (iii)  to  get  the  final  attribute  representation
vector  for node si.

es f i
eshi

esi

(v) The attribute vectors  and  were fused to get
the final attribute representation vector  for node si.

e fi ehi

The  same  approaches  were  applied  to  the  formula
node fi and  herb  node hi,  which  were  used  to  learn  on
graphs  SF  and  FH,  and  graphs  SH  and  FH  through  the
TCM-GCN model to get the final attribute representation
vectors for formula nodes and herb nodes  and .

 3.2.2  Message  passing  and  neighbor  aggregation　For
the representation learning process using the TCM-GCN

 

S

F

S

H HF

SF graph SH graph FH graph 

Formula set Herb setSymptom set

 
Figure  3    The  symptom-formula-herb  heterogeneous
graph components
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model, the message function is defined as follows:

ml
u = MSGl

(
e(l−1)

u

)
(5)

ml
u

e(l−1)
u l−1
MSGl MSGl

 refers  to  the  message  carried  by  node u at  order l
propagation, which was calculated from the attribute vec-
tor  of node u at order ( ) using the message func-
tion  at  order l.  The message function  was in
line with general linear transformation as follows:

ml
u =W le(l−1)

u (6)

e(l−1)
u (l−1)

W l

ml
u

 is the attribute vector of node u at order , the
 is  the weighted matrix.  The two times each other  can

get the transformed message .

(l−1)
The  messages  of  all  neighboring  nodes N(v)  of  the

node v at  order  were  aggregated,  the  process  of
which is defined as:

el
v = AGGl({ml

u,u ∈ N(v )}) (7)

ml
u

el
v

AGG Sum(·)

Where N(v) is  the  sum-aggregation  of  the  neighbor-
ing nodes of  node V,  is  the messages of  node u at or-
der l, nodes u and v are neighbors,  is the attribute vec-
tors  of  node v after  aggregation.  Aggregation  function

 uesed the sum function . Given that messages
that  the  nodes  already  possess  might  get  lost  sometimes
during passing,  so these messages were transformed fol-
lowing the definitions below:

ml
v =W le(l−1)

v (8)

e(l−1)
v (l−1)

W l

ml
v

 is the attribute vector of node v at order , the
 is  the weighted matrix.  The two times each other  can

get  the transformed message . Subsequently,  the mes-
sage  of  node v and its  neighboring  nodes  were  aggreg-
ated via concatenation:

el
v = σ(CONCAT ( AGGl({ml

u,u ∈ N(v )}),ml
v)) (9)

σ(·)
ReLU(·) CONCAT (·)

Where  non-linear  activation  function  used  the
function ,  represents the concatenat-
ing operation.

es f i

eshi

esi

The Equations (5)  − (9)  were used for the calculation
of  message  passing  and  neighboring  aggregation  in
Figure 4. The final attribute vector  was obtained from
learning on the graph SF; the final attribute vector  was
acquired from learning on the graph SH. The two learned
vectors were  fused  via  concatenation  to  get  the  final  at-
tribute  vector .  Then,  all  nodes s in S received repres-
entation learning to get the matrix ES of the attribute vec-
tor S. The exact procedures were repeated to learn on the
graph  SF  and  graph  FS,  and  obtain  the  attribute  vector
matrix EF of  the  formula  aggregation F,  and  to  learn  on
the graph SF and graph FS to get the attribute vector mat-
rix EH of  the herb aggregation H. Once the attribute vec-
tor  matrices ES, EF, and EH of  new  node  representations
were gained,  the  downstream  training  tasks  can  be  car-
ried out  to  lay  a  solid  data  foundation  for  the  construc-
tion  of  an  intelligent  diagnosis  and  treatment  model
based on Treatise on Febrile Diseases.

 4 Results and discussion

Node  representations  of  symptoms,  formulas,  and  herbs
were processed and calculated to get the attribute repres-
entation vectors, which were trained using the prediction
model.  For  each  clause,  the  purpose  of  the  training  is  to
minimize the disparity between actual sets and predicted
sets of formulas and herbs. Multi-labeling is fit for such a
task. The learned node representation vectors got trained
using  Multilayer  Perceptron.  The  formulas  and  herbs
with the highest probability that rank top k in the results
were selected as the predicted formula and herb sets.

 4.1 Dataset

The  clauses  from Treatise  on  Febrile  Diseases (People's
Medical Publishing House, version 2005) were organized,
of  which  195  eligible  clauses  were  selected.  The  clauses
were then manually processed with references from TCM
Syndrome Classification and the Code (GB/T 15 657-2021)
by TCM professionals.  A total  of  195 sets  (symptom sets,
formula  sets,  and  herb  sets)  were  gained  and  used
primarily to  construct  the  symptom-formula-herb  het-
erogeneous  graph  following  the  steps  described  above.
There were 601 nodes (407 symptom nodes, 112 formula
nodes,  and  90  herb  nodes)  and 20 177 edges  in  total  on
the graph. The dataset was separated as a training set and
a test set in a 4 : 1 ratio.

 4.2 Evaluation index

In order to quantitatively analyze the effects of node rep-
resentation,  three  performance  evaluation  measures,  i.e.
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Figure  4    Symptom  representation  learning  with  the
TCM-GCN model
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precision rate, recall rate, and F1-score, were introduced
to evaluate the pros and cons. For clause c =  (sc, fc, hc) in
the test  set,  the  outcome  measures  were  defined  as  fol-
lows:

Precision@K =

∣∣Top(Setpre,K)∩Setlable

∣∣
K

(10)

Recall@K =

∣∣Top(Setpre,K)∩S etlable

∣∣
|Setlable|

(11)

F1-score@K =
2×Precision@K ×Recall@K

Precision@K +Recall@K
(12)

Top(Setpre,K)
Setlable

Precision@K
Recall@K

When  the  test  set c = (sc,  fc,  hc) was  used  to  recom-
mend herbs, the  represents the top k herbs
with the highest scores from prediction,  stands for
the  actual  herb  in hc,  stands for  the  cor-
rectly  predicted  herbs  among  the  top k herbs, 
denotes for the proportion of the correctly predicted top k
herbs  to  the  actual  herbs  in hc,  and  F1-score  represents
the  weighted  average  value  of  the  precision  and  recall
rates,  which  offers  more  objective  expressiveness.  The K
values are 5, 10, and 15.

Top(Setpre,K)
Setlable

Precision@K
Recall@K

Similarly,  when  the  test  set c = (sc,  fc,  hc)  was  used  to
predict  the  formula,  the  represents  the  top
formulas with the highest scores,  for the actual for-
mula  in fc,  represents  the  precision  rate,

 for  the  recall  rate  and  F1-score  have  similar
connotations as in the prediction of herbs. The K value is 1.

 4.3 Experiments setup

The study was carried out on the basis of the deep learn-
ing  library  PyTorch  Geometric,  and  the  Intel  (R)  Core  i9
10920X processor with 64G memory was used. The learn-
ing  rate r was set  to  0.001,  the  L2  regularization  coeffi-
cient  was  set  to  0.001,  Dropout  value  was  set  to  0.3,  and
the  maximum  iteration  period  was  set  to  10  000  during
training,  with  the  use  of  Adam  optimizer.  The  optimal
depth of TCM-GCN model was 2 layers, the dimension of
embedding was 64, and the output dimension of the last
layer was 128.

 4.4 Performance comparision

The  MLP  was  applied  to  train  the  node  representations
calculated from the TCM-GCN. The training results were

verified.  To measure the pros and cons of  different node
representations, the  multi-hot  encoded,  non-fusion  en-
coded, and  fusion  coded  node  representations  were  ad-
opted for  respective  training,  and  the  results  were  com-
pared.

Table  2 shows  that  node  representation  using  fusion
encoding presented the best performance in herb predic-
tion,  those  using  non-fusion  encoding  the  second  best
performance, and those with multi-hot encoding yielded
the  poorest  performance  among  the  three.  The  P@5,
R@5, and F1@5 of  fusion encoded nodes grew by 7.87%,
1.01%,  and  8.97%,  respectively,  compared  with  the  non-
fusion  coded  ones;  however,  no  significant  differences
were  observed  between  the  results  of  P@10  and  P@15,
and of R@10 and R@15, probably because that most for-
mulas in  Treatise  on  Febrile  Diseases contain  only  a  few
herbs.  There  is  only  one  formula  in Treatise  on  Febrile
Diseases including over  14  herbs,  and  a  very  small  pro-
portion of  them are made up of  more than 14 herbs.  So,
the changes were not significant because the sample size
was  comparatively  reduced  as  the  herbs  increased.  The
fusion  encoding  produced  better  node  representation
learning  in  the  study  than  the  non-fusion  encoding  did,
suggesting  fusion  can  effectively  capture  multi-dimen-
sional messages that are related to nodes.

In  formula  prediction,  one  clause  in Treatise on  Feb-
rile  Diseases corresponds  to  one  formula.  No  formulas
were  mixed  together,  hence  the K value  was  set  to  1.
Table  3 shows the  overall  performance  of  fusion  encod-
ing, non-fusion encoding, and multi-hot encoding. Among
them,  fusion  encoding  using  TCM-GCN  produced  the
best  node  representation  and  multi-hot  encoding  the
poorest. Generally  speaking,  the  precision  rate  in  for-
mula  prediction  was  relatively  lower  than  that  in  herb
prediction. The  main  cause  for  this  might  be  that  symp-
toms  and  herbs  had  more  edges  between  them  on  the
graph,  the  message  the  graph  carries  is  more  abundant.
As opposed to the symptoms and herbs, the relationship
between  symptoms  and  formulas  was  simpler  with  few
messages in their node representations, so the prediction
results were poorer by comparison.

In  TCM-GCN node  representation  learning,  the  layer
numbers of  GCN  also  affect  the  final  results. Figure  5
shows the different prediction results  of  fusion encoding
when the convolution layers of TCM-GCN model are 1 to

Table 2   Results of different node representations for herb prediction

Encode method P@5 P@10 P@15 R@5 R@10 R@15 F1@5 F1@10 F1@15

Multi-hot 0.430 1 0.408 1 0.425 3 0.495 3 0.526 1 0.501 9 0.460 4 0.459 7 0.460 4

Non-fusion 0.551 8 0.490 2 0.510 2 0.544 6 0.568 6 0.540 7 0.548 2 0.526 5 0.525 0

Fusion 0.595 2 0.538 1 0.530 8 0.599 6 0.606 4 0.618 9 0.597 4 0.570 2 0.571 5

Gain 7.87% 9.77% 4.04% 1.01% 6.65% 14.46% 8.97% 8.30% 8.86%
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3 layers deep. It is found that when the number of convo-
lution layers is 1 and 2, the precision rate, recall rate, and
F1  value  all  have  better  prediction  results.  However,  the
improvement  of  two  layers  convolution  is  not  obvious
compared  with  that  of  one  layer  convolution.  When  the
number of  convolution  layers  reaches  3,  the  result  de-
creases  significantly.  The  analysis  may  be  caused  by  the
over-fitting of  the  model  when  the  number  of  propaga-
tion layers becomes larger.

According to the overall results, TCM-GCN can effect-
ively represent the symptom, formula, and herb nodes on
the  heterogeneous  graph  of Treatise  on  Febrile  Diseases.
The  convolutions  operating  at  the  second  layer  for

message propagation can yield the optimal node repres-
entations. Comparisons  among  the  results  from  the  fu-
sion encoding,  non-fusion  encoding,  and  multi-hot  en-
coding, fusion encoding is the most efficient in capturing
the relationship  between  nodes,  thus  improving  the  ef-
fects of node representation.

 5 Conclusion

In  our  study,  the  heterogeneous  graph  representation
learning method was analyzed with the use of Treatise on
Febrile Diseases,  the clauses in which were extracted and
processed to  build  the  symptom-formula-herb  hetero-
geneous  graph.  A  node  representation  learning  method
for  the  heterogeneous  graph,  TCM-GCN,  was  proposed
and  applied  to  learn  on  symptom-formula,  symptom-
herb,  and  formula-herb  heterogeneous  graphs,  during
which the  high-order  propagation was  carried out  to  get
new attribute vectors of the node representation via mes-
sage passing and neighboring aggregation, and in the end
to acquire new sets of symptom, formula, and herb node
representations. Our study proved the effectiveness of the
TCM-GCN model in node representation learning.

Given  that  the  current  study  has  only  adopted  the
simple  connectivity  among  symptoms,  formulas,  and
herbs,  without  taking  into  consideration  that  symptoms
in the clauses can be rated as primary or secondary, and
herbs in the formulas have different weighted connectiv-
ity and  relationship  such  as  monarch  and  minister  ,  as-
sistant  and  guide.  Therefore,  an  attention  mechanism
might be taken into future studies to acquire complicated
semantics among TCM entities.
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基于图卷积网络的《伤寒论》异质图构建及节点表示学习方法

晏峻峰a, 文志华a, b, 邹北骥a, c*

a. 湖南中医药大学信息科学与工程学院, 湖南 长沙 410208, 中国

b. 湖南工业大学计算机学院, 湖南 株洲 412008, 中国

c. 中南大学计算机学院, 湖南 长沙 410083, 中国

 
【摘要】目的  基于图卷积神经网络，构建《伤寒论》“症状-方剂-中药”异质图并探寻节点向量表示的最优学

习方法。方法  从《伤寒论》含处方的条文中提取出症状、方剂、中药信息，构建“症状-方剂-中药”异质图，基于

图卷积网络提出一种“症状-方剂-中药”异质图节点表示学习方法—中医图卷积网络（TCM-GCN），利用 TCM-

GCN 分别对症状-方剂、症状-中药、方剂-中药异质图进行学习，基于消息传递和邻居聚合进行高阶传播得到节

点的表示特征向量，获得症状、方剂、中药三类节点表示集合，为下游诊断预测模型任务的顺利开展提供基础。

结果  通过多热编码、非融合编码、融合编码三种节点表示方式在模型预测实验中对比发现，融合编码方式获得

了相对较高的精准率、召回率和 F1-score 值，其 Precision@10、Recall@10 和 F1-score@10 值较非融合编码分

别提升了 9.77%、6.65% 和 8.30%。结论  融合编码方式生成的节点表示在实验中取得了较好效果，表明《伤寒

论》异质图节点表示 TCM-GCN 方法的有效性，也将提升其在下游诊断预测任务上的性能。

【关键词】图卷积网络；异质图；《伤寒论》；异质图节点表示；节点表示学习
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