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ABSTRACT

Keywords: COVID-19, SARS-CoV-2, vaccine, molecular docking

The ongoing coronavirus disease (COVID-19) pandemic, caused by severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), is causing major damages in health and economies worldwide. The development 
of safe and effective vaccines for COVID-19 is of utmost importance yet none have been licensed to date. One 
of the strategies for vaccine development utilizes dendritic cells which express class I and class II human 
leukocyte antigen (HLA) molecules. These HLA molecules present the antigenic peptides to T cells which 
mediate the immune response. Thus, the study aimed to identify SARS-CoV-2 peptides with potential binding 
to HLA class I and class II molecules using different bioinformatics tools. SYFPEITHI and IEDB were used to 
predict epitopes for the most common HLA class I and II alleles among Filipinos. The top predicted epitopes 
were subjected to de novo and template-based molecular docking. Then, binding energies of the generated 
peptide-HLA complexes to putative T cell receptors were predicted using a homology modeling approach. 
Several predicted epitopes showed promising MHC and TCR binding, although results varied considerably 
between the prediction methods used. In particular, the results of de novo and template-based docking 
methods did not coincide, the latter of which generated complexes that more closely resemble typical 
peptide-HLA complexes. The results of this study will be validated by the next stage of the vaccine 
development project which is the in vitro assessment of the T cell responses elicited by dendritic cells pulsed 
with the candidate peptides.

Introduction

The Coronavirus disease (COVID-19) is the infectious disease 
caused by severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) that is responsible for the ongoing pandemic 
affecting over 200 countries and territories globally [1]. SARS-
CoV-2 is a novel strain of coronavirus, initially believed to be 
spread mainly through contact and droplet transmission but is 
now considered to be potentially airborne [2-4] . It enters 
human cells via the angiotensin-converting enzyme 2 (ACE2) 
receptor in the presence of TMPRSS2, which are co-expressed in 
the lungs, esophagus, intestines, and other tissues [5-7] . COVID-
19 is primarily a respiratory illness, characterized by cough, 
pneumonia, or acute respiratory distress syndrome (ARDS) 
depending on the severity [8]. However, it may also present with 
extrapulmonary manifestations such as lymphopenia, 
myocardial infarction, and stroke [9]. In severe cases, COVID-19 
may lead to respiratory failure and death [10] . As of 1 November 

2020, over 45 million people have been confirmed to be infected 
with SARS-CoV-2 and around 1.2 million mortalities have been 
recorded due to COVID-19, with observed case-fatality rates 
ranging from 0.1 to 29% in different countries  [1,11]. The 
Philippines is one of the countries that are greatly affected by 
this pandemic. It currently ranks 22ⁿ� and 2ⁿ� among countries 
with the highest total number of cases globally and in Southeast 
Asia, respectively, with over 378 thousand reported cases. It also 
has the highest mortality rate in Southeast Asia with 67.82 
deaths per million of population [1,12].

Currently, clinical management of COVID-19 remains 
largely supportive, and therapies specifically indicated for 
the disease are still only investigational [13-15]. There are 
several antiviral and anti-inflammatory pharmacotherapies 
as well as passive immunotherapies currently undergoing 
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clinical trials for the treatment of infected patients [16]. 
However, in the absence of a vaccine for COVID-19, slowing 
down disease transmission currently relies on hygiene, 
disinfection, and personal protective measures, as well as 
drastic quarantine policies, resulting in massive disruptions 
to normal life [17]. Hence, while a safe and effective vaccine 
has yet to be licensed, vaccine research and development 
efforts remain a priority pandemic response. To date, 45 and 
156 candidate vaccines for COVID-19 are in clinical and 
preclinical stages, respectively [18]. Current platforms under 
investigation include numerous RNA, DNA, recombinant 
protein, virus-like particle, viral vector-based, inactivated, 
and even live attenuated vaccines [18,19].

The priming of T cells by dendritic cells requires the loading 
of the antigenic peptide onto the MHC molecule, also called 
human leukocyte antigen (HLA) in humans, and recognition of 
the peptide-MHC complex (pMHC) by a T cell receptor (TCR) 
[26]. Hence, in the design of peptide-loaded dendritic cell 
vaccines, the binding affinities of peptides to MHC and pMHC 
to TCR are important considerations. In this paper, we 
predicted SARS-CoV-2 epitopes for the most common HLA 
class I and II alleles in Filipinos, modelled their structures using 
de novo and templated-based methods, and performed 
docking to determine pMHC binding affinity. We also 
attempted to determine the affinity of the generated pMHCs 
for HLA class I to available TCRs. By focusing on highly 
immunogenic SARS-CoV-2 proteins, i.e. spike, envelope, and 
membrane proteins, as well as the ORF1ab polyprotein 
encoded by two-thirds of the viral genome, this bioinformatics 
approach may facilitate the design of a protective SARS-CoV-2 
vaccine [27,28].

One under-investigated vaccine platform are dendritic cell 
vaccines. Dendritic cells are the most potent antigen-
presenting cells (APCs); they can activate both CD8+ T cells to 
kill virus-infected cells and CD4+ T cells to induce antibody-
production in plasma cells via major histocompatibility 
complex (MHC) class I and II molecules, respectively [20]. A 
fraction of these short-lived effector T cells survive to become 
memory cells that quickly respond to subsequent antigenic 
challenge, providing long-term immunity [21]. While most 
researches on dendritic cell vaccines focus on cancer therapy, 
animal and human studies on hepatitis viruses, human 
immunodeficiency virus 1 (HIV-1), and herpes simplex virus 1 
(HSV-1) among others suggest a potential for dendritic cell 
vaccination in viral infections [22-25]. Using synthetic 
peptides, which require no handling of the infective SARS-CoV-
2 virion, dendritic cells can be loaded with viral epitopes and 
induced to mature for potential use in a COVID-19 vaccine. 

Methodology

SARS-CoV-2 epitope prediction

The allele frequency of HLA class I and class II alleles in 
the Philippines were obtained from the Allele Frequency 
Net Database [29].  The most common alleles were found to 
be HLA-A*02:01 and HLA-A*24:02 for class I and HLA-
DRB1*15:02 and HLA-DRB1*12:02 for class II. SYFPEITHI 
and Immune Epitope Database (IEDB) algorithms were used 
to predict 9-mer HLA class I and 15-mer class II epitopes, 
respectively, from the sequences of SARS-CoV-2 proteins 
[30,31]. The HLA Class I peptides were based on the 
selection list of FMH while the HLA Class II peptides were 
based on the selection list of Dennis Macapagal.

HLA structures 

Molecular docking on HLA

The three-dimensional structures of the predicted epitopes 
were generated using PEP-FOLD3, which performs de novo 

De novo molecular docking

The predicted epitopes were docked on the HLA 
molecules using de novo and template-based molecular 
docking. 'Stuffer' peptides, or self-peptides that are able to 
bind to the HLA molecule and are displaced by antigenic 
peptides, were also included in the analysis. Phogrin , 331-339

probable C-mannosyltransferase DPY19L4 , and CLIP139-147 87-101 

were used as stuffer peptides in this study [20,34,35]. 
Peptides that do not bind the HLA alleles of interest – 
Hantaan virus nucleoprotein  (HNTV-NP), human 131-139

immunodeficiency virus I Gag-Pol polyprotein , and 273-282

herpes simplex virus I tegument protein  (VP11/12) – 519-533

were used as negative controls [36-38]. The stuffer peptides 
and negative control used for each HLA allele in the study 
are outlined in Table 1. The model with the highest binding 
affinity (greatest binding energy) was selected to represent 
the predicted binding of the selected SARS-CoV-2 peptides. 
Peptide-HLA interactions were visualized using UCSF 
Chimera 1.14 [39].

The experimental structures of HLA-A*02:01 (3D25, 1.30 
Å) and HLA-A*24:02 (3WL9, 1.66 Å) were obtained from the 
Protein Data Bank. The three-dimensional structures of 
HLA-DRB1*12:02 and HLA-DRB1*15:02 were modeled with 
SWISS-MODEL using the sequences obtained in the IPD-
IMGT/HLA Database [32,33].
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Prediction of T-cell receptor binding

same size as previously described, oriented along the 
peptide-binding cleft, and centered on the ligand.

Prospect T cell receptors (TCRs) that can potentially 
recognize the generated peptide-MHC (pMHC) complexes 
were obtained from VDJdb [43]. Among the TCRs restricted to 
the chosen HLA-A alleles, those whose epitopes shared the 
highest sequence identity with the SARS-CoV-2 peptides 
were selected (Table 2). There were no available TCRs for the 
HLA class II alleles of interest hence the predicted epitopes for 
HLA class II were excluded in the subsequent analyses. The 
sequence of each TCR was obtained from the TCRmodel web 
server [44]. Then, sequences of the TCR, peptide, and MHC 
were submitted to TCRpMHCmodels for homology modeling 
of TCR-pMHC complex structures [45]. In the resulting model, 
the pMHC complex was replaced with that obtained from 
molecular docking and the new TCR-pMHC complex was 

prediction of native peptide conformations in aqueous 
solution [40]. Then, the predicted epitopes were subjected to 
flexible ligand docking in AutoDock Vina using default docking 
parameters (e.g., exhaustiveness = 8). A 33.75×18.75×15.0 Å³ 
(HLA-A*02:01 and HLA-A*24:02) or 20.25×20.25×47.25 Å³ 
(HLA-DRB1*12:02 and HLA-DRB1*24:02) gridbox spanning the 
whole peptide-binding cleft was used for HLA class I or class II 
alleles, respectively.

Template-based molecular docking 

The predicted epitopes were subjected to preliminary 
docking in GalaxyPepDock, a web server that performs 
template-based protein-peptide docking [41]. For each 
predicted epitope, the top model based on estimated 
prediction accuracy was subsequently re-docked in AutoDock 
Vina using default docking parameters [42]. The ligand 
backbone was set as rigid prior to docking, allowing only its 
side chain bonds to rotate. The gridbox was defined with the 

Table 1. Stuffer and negative control peptides used in the molecular docking of predicted SARS-CoV-2 epitopes on HLA molecules.

HLA Allele Stuffer Peptide Negative Control

Protein Sequence Protein Sequence

A*02:01 Phogrin GMAELMAGL HNTV-NP VPILLKALY

A*24:02 DPY19L4 LYPELIASI Gag-Pol VPLDKDFRKY

DRB1*12:02 CLIP PVSKMRMATPLLMQA VP11/12 YTHMGEVPPRLPARN

DRB1*15:02 CLIP PVSKMRMATPLLMQA VP11/12 YTHMGEVPPRLPARN

Table 2. TCRs used for the modeling of TCR-peptide-MHC complexes.

HLA Allele Target TCRA TCRB

CDR3 V J CDR3 V J

A*02:01

S CATEGDSGY
STLTF

TRAV17 TRAJ11 CASSLQGGN
YGYTF

TRBV6-5 TRBJ1-2

ORF1ab CADLQTNAR
LMF

TRAV5 TRAJ31 CSGGQGMV
DGYTF

TRBV29-1 TRBJ1-2

E CAFTSGTYKY
IF

TRAV38-1 TRAJ40 CASSIVQGSN
QPQHF

TRBV19 TRBJ1-5

M CALSGPNTG
NQFYF

TRAV19 TRAJ49 CASSLGILGG
SLEPQHF

TRBV13 TRBJ1-5

A*24:02 S CAVNRGTALI
F

TRAV12-2*01 TRAJ15*01 CASTPENQE
TQYF

TRBV28*01 TRBJ2-5*01

ORF1ab CAAKEGYSTL
TF

TRAV13-1*01 TRAJ11*01 CASSSTGGG
EKDQPQHF

TRBV5-4*01 TRBJ1-5*01

E CAAKEGYSTL
TF

TRAV13-1*01 TRAJ11*01 CASSSTGGG
EKDQPQHF

TRBV5-4*01 TRBJ1-5*01

M CAVNRGTALI
F

TRAV12-2*01 TRAJ15*01 CASTPENQE
TQYF

TRBV28*01 TRBJ2-5*01



For HLA class I, the highest-scoring epitope predicted by 
SYFPEITHI per viral protein per allele was selected for analysis 
(Table 3). HLA class I molecules, which have close-ended 
peptide-binding clefts, are only able to present epitopes 8-15 
residues long [48,49]. Optimal epitope length varies between 
HLA alleles, and is 9-mer for A*02:01 and A*24:02 [48]. 
Unsurprisingly, the top HLA-A*02:01 epitopes for all protein 
targets have hydrophobic residues at P2 and the C-terminus, 
which are known anchors for this allele [50]. Meanwhile, HLA-
A*24:02 epitopes have either F or Y at P2 and I or L at the C-
terminus, consistent with its known anchor residues [51]. 
Notably, the scores for HLA-A*02:01 were generally higher 
than for HLA-A*24:02, possibly due to the different maximal 
SYFPEITHI scores for different alleles [52]. While the highest 
possible score for each allele is not published, the disparity 
could potentially arise from differences in number of anchor 
positions, unfavorable residues, and other such factors that 
may vary between alleles that could affect the scoring.

Results
 

refined using the GalaxyRefineComplex web server [46]. The 
free energy of binding of the pMHC to the TCR at 25°C was 
predicted using the PRODIGY web server [47].

On the other hand, the peptide-binding groove of HLA 
class II molecules have open ends, allowing epitopes 12-25 
amino acids long where only 9 residues typically comprise the 
binding core [53,54]. Because of the degeneracy of HLA class II 
anchor positions that result from this, epitope prediction for 
class II tends to be trickier than for class I [55]. For this analysis, 
four S protein epitopes predicted by IEDB to bind to multiple 
HLA class II alleles were chosen, although subsequent analyses 
were performed using only the two most common alleles 
among Filipinos, i.e. HLA-DRB1*12:02 and HLA-DRB1*15:02. 
While data on optimal epitope length for each HLA-DR allele is 
not available, HLA class II epitope length distribution has been 
said to peak at 15-mer [56]. The chosen HLA class II epitopes 
are as follows: VEGFNCYFPLQSYGF, YQTQTNSPRRARSVA, 
VGGNYNYLYRLFRKS, and CGSCCKFDEDDSEPV. 

Next, molecular docking was used to provide structure-
based insights into the potential immunogenicity of the 
selected SARS-CoV-2 peptides. For the purposes of this study, 
potential binding to the HLA alleles of interest will be defined 
as greater predicted binding free energy compared to the 
corresponding stuffer and negative control peptides. A higher 
affinity for the predicted epitope than for the stuffer peptide 
suggests that the former may be able to displace the stuffer 
peptides and be loaded onto the HLA molecule for antigen 

The results differed greatly between the two methods of 
molecular docking - both in the absolute and more 
importantly in the relative values. Template-based docking 
predicted much greater binding energies for all peptides. 
Additionally, the trends in the predicted binding energy for 
each allele differed between the two methods. Both methods 
agreed on the top epitope only for HLA-DRB1*15:02. 
VEGFNCYFPLQSYGF was the top epitope predicted by both 
methods for DRB1*15:02 and by template-based docking for 
HLA-DRB1*12:02. Meanwhile, template-based docking 
ranked QYIKWPWYI as the top epitope for HLA-A*24:02 which 
coincides with the results of sequence-based algorithm of 
SYFPEITHI (Table 3). It is interesting to note that no single 
peptide was predicted to have potential HLA binding by both 
de novo and template-based molecular docking. Since the 
docking methods produced conflicting results, structural 
information of the docking outputs may be used to determine 
which is more likely to be correct.

The interactions between the epitopes with the greatest 
binding energies and the HLA peptide-binding domain were 
predominated by Van der Waals forces (Figure 1). Hydrogen 
bonds mostly involved terminal residues for the HLA class I 
epitopes and was distributed along the peptide for the HLA 
class II epitopes. More peptide-MHC contacts and hydrogen 
bonds were determined for complexes generated by 
template-based docking, which possibly explains their 
difference in the obtained binding energy values.

presentation. Out of the four predicted epitopes per allele, 
two for A*02:01, four for A*24:02, three for DRB1*12:02, and 
two for DRB1*15:02 potentially bind the HLA molecule 
according to de novo or template-based docking (Table 4). The 
rest of the peptides were predicted to have greater binding 
energy than the stuffer peptide by de novo and/or template-
based docking but could not be considered to have potential 
HLA binding due to equal or lower predicted binding energy 
than the negative control. This was because the stuffer 
peptide, which is supposedly able to bind to HLA, surprisingly 
had a lower predicted binding energy than the negative 
control in many cases. This demonstrates the limitations of the 
methods used in this study, which shall be discussed further in 
the succeeding section.

The docking outputs generally resembled typical MHC 
class I and class II epitopes in terms of overall ligand 
conformation (Figure 2). That is, buried ends and raised 
center for class I epitopes and a more linear, fully extended 
conformation for class II epitopes [57]. However, de novo 
docking yielded ligand structures that were generally raised 
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farther from the HLA 'floor' and many were folded upon 
themselves which is uncharacteristic of MHC class II 
epitopes. Furthermore, template-based docking-derived 
ligands generally showed a snugger fit in the peptide-
binding cleft than those obtained from de novo docking 
(Figures 3-6). This difference was more apparent for de 
novo-predicted HLA class II complexes which had folded 
epitope conformations. Overall, these indicate the 
template-based docking method used in the study may have 
yielded more accurate results over the de novo method. 

TCR-pMHC binding was additionally attempted for HLA class 
I alleles as a potential predictor of epitope immunogenicity. 
While the TCR sequences were chosen on the basis of the 
shared sequence identity between the original TCR epitopes 
and each SARS-CoV-2 epitope, there was generally little 
similarity between the available TCR epitopes and the 
candidate epitopes (Table 5). This was more so for HLA-
A*24:02, presumably because of the smaller set of known TCR 
epitopes for this allele. As expected, most matching amino acids 
correspond to each allele's anchor residues.

In silico prediction of SARS-CoV-2 epitopes for vaccine development
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Table 3. SARS-CoV-2 peptides predicted by SYFPEITHI to bind to HLA-A*02:01 and HLA-A*24:02. 

HLA Allele Viral Protein Target Epitope Sequence SYFPEITHI Score

A*02:01 S (spike protein)

M (membrane protein)

ORF1ab (polyprotein)
E (envelope protein)

FLLPSLATV

KLLEQWNLV
FLLVTLAIL

FIAGLIAIV

29

30
33

26

A*24:02
ORF1ab (polyprotein)
E (envelope protein)

S (spike protein)

M (membrane protein)

MYASAVVLL
QYIKWPWYI

LYIIKLIFL
VFLLVTLAI

23

23
21

24

Table 4. Predicted binding energies (ΔGbinding) of the SARS-CoV-2 peptides to HLA molecules based on de novo and template-based 
molecular docking, including stuffer peptides (phogrin, DPY19L4, and CLIP) and negative controls (HNTV-NP, Gag-Pol, and VP11/12). The 
values in bold indicate the top predicted epitopes per docking method per HLA allele.

HLA Allele Protein Epitope Sequence De novo Template-based

ΔG  binding

(kcal/mol)
ΔG  binding

(kcal/mol)
Template

A*02:01

Phogrin
HNTV-NP

M

S
ORF1ab
E

bFLLPSLATV

VPILLKALY

KLLEQWNLV
GMAELMAGL

FLLVTLAIL

bFIAGLIAIV
-7.6

-8.1

-8.1

-7.7

-7.1
-7.6

-16.0

-10.3

-15.5
-13.4
-11.5

-13.4 2X4S

1QEW

2CLR
1A9E

1QEW

2CLR

A*24:02

Gag-Pol

ORF1ab

DPY19L4

E
M

S
aMYASAVVLL

LYPELIASI

aVFLLVTLAI

bQYIKWPWYI

aLYIIKLIFL

VPLDKDFRKY

-7.7
-7.7

-6.6

-7.3

-7.5
-7.9

-14.7

-8.7
-13.1

-8.1
-16.8

-11.3

2BCK

2BCK
2BCK

2AXG
2BCK
2BCK

DRB1*12:02 S

S

VP11/12

S
S

CLIP

bVGGNYNYLYRLFRKS

PVSKMRMATPLLMQA

bVEGFNCYFPLQSYGF
bYQTQTNSPRRARSVA

CGSCCKFDEDDSEPV

YTHMGEVPPRLPARN

-6.4
-6.9
-6.2

-5.6
-7.2

-6.5

-10.9
-11.1

-14.4

-12.6
-9.7

-13.1
1A6A

1PYW
1H15
1H15

1A6A
1A6A

DRB1*15:02
S

S

S

S

VP11/12
CLIP PVSKMRMATPLLMQA

YTHMGEVPPRLPARN

bVGGNYNYLYRLFRKS
CGSCCKFDEDDSEPV

bVEGFNCYFPLQSYGF
YQTQTNSPRRARSVA

-5.6
-6.9

-6.0
-5.5

-6.8
-6.2

-12.7

-10.9

-13.8
-9.7

-11.6

-12.6

1H15
1YMM

1H15

1A6A
1A6A

1YMM

bPredicted by template-based molecular docking to have higher affinity to the HLA molecule than both the stuffer peptide and the negative control.

aPredicted by de novo molecular docking to have higher affinity to the HLA molecule than both the stuffer peptide and the negative control.



Proceeding with the analysis despite this limitation, 
binding energies were determined for a homology model 
(TCRpMHCmodels), as well as models that use the TCR 
structures from this initial model and pMHC structures from 
the de novo and template-based peptide-HLA docking steps, 
where binding affinity trends differed among these three 
models for both alleles (Table 6). For HLA-A*02:01, the top 
epitope from the homology model agreed with the de novo 
model whereas it agreed with the template-based model for 
HLA-A*24:02. Apart from this no other similarities in the 

predictions between models were observed, making it 
difficult to hypothesize as to which might be the most 
reliable method based on this data alone. Notably, the 
strongest binders predicted for HLA-A*02:01 in the peptide-
HLA docking also had the highest affinity to their 
corresponding TCR in this analysis. That is, the E epitope for 
the de novo model and the S epitope for the template-based 
model, suggesting that these might be the most promising 
epitopes for this allele. There is no such consensus in the HLA 
and TCR docking results for HLA-A*24:02, although the 

In silico prediction of SARS-CoV-2 epitopes for vaccine development

Figure 1. Interaction diagrams of the top SARS-CoV-2 epitopes per HLA allele according to de novo (A,C,E,G) and template-based 
(B,D,F,H) molecular docking with the HLA peptide-binding domain. Close contacts are shown as purple lines while hydrogen bonds are 
shown as orange lines.

6 Phil J Health Res Dev October-December 2020 Vol.24 No.4, 1-19



Figure 2. Comparison of ligand conformations of SARS-CoV-2 predicted epitopes. Reference epitopes were obtained from experimental 
pMHC structures. For the HLA-A alleles, the original ligands of the HLA structures (PDB ID: 3D25, 3WL9) were used as the reference. 
Experimental structures of ligands bound on HLA-DRB1*03:01 (PDB ID: 1A6A) and HLA-DRB1*15:01 (PDB ID: 1BX2) were used for HLA-
DRB1*12:02 and HLA-DRB1*15:02, respectively. There are currently no available pMHC structures for these two alleles. (A) Side view of 
ligand backbone conformations. (B) Ligand structures on the MHC molecule.
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Figure 3. Conformations of the predicted epitopes in the HLA-A*02:01 peptide-binding cleft predicted by de novo (A) and template-based 
(B) molecular docking. The stuffer (phogrin) and negative control (HNTV-NP) peptides are also shown.
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Figure 4. Conformations of the predicted epitopes in the HLA-A*24:02 peptide-binding cleft predicted by de novo (A) and template-based 
(B) molecular docking. The stuffer (DPY19L4) and negative control (Gag-Pol) peptides are also shown.
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Figure 5. Conformations of the predicted epitopes in the HLA-DRB1*12:02 peptide-binding cleft predicted by de novo (A) and template-
based (B) molecular docking. The stuffer (CLIP) and negative control (VP11/12) peptides are also shown.
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Figure 6. Conformations of the predicted epitopes in the HLA-DRB1*15:02 peptide-binding cleft predicted by de novo (A) and template-
based (B) molecular docking. The stuffer (CLIP) and negative control (VP11/12) peptides are also shown.
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Table 5. Percent identity shared between the sequences of each SARS-CoV-2 peptide and its most similar TCR epitope for HLA class I 
alleles. The amino acids in bold indicate matching residues.

HLA Allele Protein SARS-CoV-2 Epitope 
Sequence

TCR Epitope Sequence % Identity

A*02:01

M
E
ORF1ab
S FIAGLIAIV

KLLEQWNLV
FLLVTLAIL
FLLPSLATV

KVLEYVIKV

FLYALALLL
NLVPMVATV
SLFNTVATL

55.56
22.22

44.44
44.44

A*24:02 S

E
ORF1ab

M

MYASAVVLL

LYIIKLIFL

QYIKWPWYI

VFLLVTLAI
QYDPVAALF
QYDPVAALF

AYAQKIFKI

AYAQKIFKI
11.11
22.22
22.22

22.22

Table 6. Predicted binding energies (ΔG ) of the SARS-CoV-2 peptide-MHC complexes from homology (TCRpMHCmodels), de novo, binding

and template-based docking methods to TCR. The values in bold indicate the top predicted epitopes per method per HLA class I allele.

HLA Allele Protein SARS-CoV-2 
Epitope Sequence

ΔG  (kcal/mol)binding

TCRpMHCmodels De novo Template-based

A*02:01 S

E
ORF1ab

M KLLEQWNLV

FIAGLIAIV
FLLPSLATV
FLLVTLAIL

-14.0
-12.4
-14.9
-14.8

-15.9

-15.1
-13.2

-13.7
-14.4
-15.0

-13.1

-15.4

A*24:02

M

S
ORF1ab
E

QYIKWPWYI

LYIIKLIFL

MYASAVVLL
VFLLVTLAI

-10.4
-8.3
-11.9

-11.5
-15.5

-13.5
-15.4

-14.1

-11.9
-13.1

-13.0
-11.4

strongest HLA binder predicted from the de novo method 
showed the highest affinity to its TCR based on the homology 
and template-based models. That is, the M epitope. 

Structurally, the initial TCR-pMHC models, which were 
derived through homology modelling, resembled their 
corresponding templates (Figures 7-8). As the structures were 
refined for the de novo and template-based models, the 
orientation of the TCR relative to the pMHC changed for some, 
most noticeably in both the de novo and template-based 
models for the S and M epitopes for HLA-A*24:02 (Figure 8). 
The binding geometry of TCR to pMHC has been shown to 
affect induction of TCR signalling, so developing a method that 
reliably predicts TCR-pMHC structure could potentially be 
useful in predicting peptide immunogenicity  [58].

Discussion

Immunogenicity of an antigen requires binding with 
sufficient affinity to both the MHC and the TCR. Candidate 
SARS-CoV-2 epitopes identified by sequence-based algorithms 
were subjected to molecular docking on HLA molecules – de 
novo docking using PEP-FOLD3 and AutoDock Vina and 
template-based docking using GalaxyPepDock followed by 

An important foundation of epitope prediction is that MHC 
binding is mostly determined by anchor residues, although 
other residues contribute as well [59,60]. SYFPEITHI's epitope 
prediction algorithm involves generating all possible oligomers 
of specified length, in this case nonamers, for the input 
sequence and scoring all amino acids in each oligomer based 
on criteria that includes the prevalence of that amino acid in 
ligands for that HLA allele, how frequently the amino acid 
occurs in anchor positions, whether it's considered unfavorable 
for binding, and such [30]. Meanwhile, IEDB employs multiple 
available methods to predict HLA class II epitopes, including an 
IEDB recommended method that currently uses a consensus 

semi-flexible redocking in AutoDock Vina. The binding affinity 
of the TCR-peptide-MHC complexes were also predicted using 
homology modeling. Multiple methods for predicting HLA 
binding were used in order to provide a more reliable 
prediction. Positive results across the different methods for a 
candidate peptide would reinforce its potential for vaccine 
development. VEGFNCYFPLQSYGF showed the most 
promising HLA binding among the predicted class II epitopes. 
For HLA class I epitopes, different peptides were predicted to 
have the highest affinity for the HLA molecules and, in the case 
of HLA-A*24:02, for the TCRs. 
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Figure 7. TCR-pMHC complexes formed by SARS-CoV-2 peptides for HLA-A*02:01 predicted by homology modeling (TCRpMHCmodels), 
and de novo and template-based molecular docking. A reference structure for TCR-bound HLA-A*02:01 was obtained from the RCSB PDB 
(PDB ID: 2VLJ).
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Figure 8. TCR-pMHC complexes formed by SARS-CoV-2 peptides for HLA-A*24:02 predicted by homology modeling (TCRpMHCmodels), 
and de novo and template-based molecular docking. A reference structure for TCR-bound HLA-A*24:02 was obtained from the RCSB PDB 
(PDB ID: 3VXS).
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In the peptide-HLA molecular docking performed, the de 
novo and template-based methods yielded conflicting 
results. The two methods did not agree as to the absolute 
and even relative affinities of the candidate epitopes for all 
HLA alleles. Further, no peptide was predicted to bind to its 
respective HLA by both methods. In the de novo method, 
PEP-FOLD3 first generates the native conformation of the 
peptide by free modelling, i.e. no input reference or receptor 
structure, and the top model is docked as a fully flexible 
ligand onto the rigid HLA molecule using AutoDock Vina. 
AutoDock Vina performs template-free docking using a 
scoring function derived from knowledge-based potentials 
and empirical information on conformation preferences of 
protein-ligand complexes and affinity measurements [42]. 
On the other hand, the template-based method initially uses 
GalaxyPepDock, which models peptide-HLA binding by using 
similar experimental structures as template while still 
allowing for structural flexibility for both the peptide and 
HLA molecule, and secondly re-docks the top output as a 
semi-flexible (i.e. rigid backbone) ligand and a rigid receptor 
using AutoDock Vina to allow readjustment of peptide side 
chains for the most stable bound conformation. This means 
that only the template-based method permits HLA flexibility, 
which might have allowed for more interactions to be 

approach that combines several molecule-specific predictors 
when these are available for the specified allele, and uses pan-
specific predictors otherwise [61-65]. While structure-based 
methods are available, sequence-based epitope prediction 
tools such as those in SYFPEITHI and IEDB are generally 
preferred due to the poorer predictive performance and longer 
computation time associated with structure-based 
approaches [66]. Nevertheless, structural information may still 
guide sequence-based epitope prediction. For example, 
molecular docking has been used to investigate peptide 
binding to MHC class I and II  [67,68].

There are two general methods for protein-peptide 
docking – template-based and template-free or de novo 
docking. Template-based docking uses known structures of 
complexes or complex interfaces with similar sequences to 
model the complex formed between two target molecules. 
While template-based docking generally provides good 
predictive performance when template structures are 
available, it is limited by the availability of template 
structures and by the fact that interface architecture is not 
always similar for similar interactions. On the other hand, de 
novo docking has a wider applicability since it is not 
dependent on available complex structures but generally 
has poorer predictive power [69].

established between the peptide and the HLA peptide-
binding cleft, increasing the predicted affinities. Expectedly, 
hydrogen bonds were mainly predicted to hold the termini 
of the peptides to the HLA class I groove, but were found 
along the length of the peptide for HLA class II [70]. However, 
protein-peptide docking using AutoDock Vina has been 
shown to perform generally poorly for peptides longer than 
four residues so the de novo method, which relies solely on 
AutoDock Vina to find peptide-HLA interactions, might be 
less preferable to the template-based method that uses 
AutoDock Vina strictly for docking refinement [71]. 
Additionally, the epitope conformations and pMHC 
structures generated by template-based docking were more 
reminiscent of typical epitopes presented on HLA molecules. 
This is expected as this method used experimental HLA 
epitopes as scaffolds for peptide modelling, whereas de 
novo-docked peptides were free to take on conformations 
not likely to be taken by HLA epitopes.

While this suggests that the template-based method 
might be a better predictor of pMHC binding, some results 
for the stuffer and negative controls, even for the seemingly 
more reliable template-based docking, conflicted with what 
was expected, i.e. stuffer peptides ought to have higher 
affinity for the HLA molecule compared to the negative 
control. Poor epitope selection cannot be ruled out, as this is 
limited by data availability especially for certain HLA alleles. 
For example, while CLIP seems to be the intuitive choice as 
stuffer for HLA class II, it is known to bind to different alleles 
with varying affinity [72]. Hence, low-affinity CLIP binding, 
to a point where the negative control might exhibit stronger 
affinity for the HLA molecule, is conceivable. Ultimately, 
experimental T cell response data will be necessary to 
confirm the potential of either method as reliable epitope 
prediction strategies.

Lastly, there were several assumptions in the prediction 
of TCR binding: the TCRs are able to cross-react with epitopes 
of similar sequences, TCR-pMHC complexes adopt similar 
structures as those with similar sequences, and pMHC 
binding affinity for the TCR is a predictor of T cell response. 
TCR promiscuity is one of the factors that broadens the range 
of antigens that the host immune system can recognize [73]. 
However, epitope sequence similarity alone may not be 
sufficient basis for prediction of TCRs that can bind a certain 
pMHC complex since even a single amino acid polymorphism 
in the epitope can result in non-binding of a TCR in some 
cases [74]. Even if, optimistically, the TCRs used in this study 
were not as selective, the mere 11-56% sequence identity 
shared by the candidate peptides with the experimental TCR 
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In this study, sequence-based and structure-based 
computational tools were used to identify potentially 
immunogenic SARS-CoV-2 epitopes for vaccine development. 
However, results varied considerably between the different 
prediction methods used, likely due to the different 
assumptions and limitations associated with each method. 
Template-based molecular docking may have produced the 
more accurate results than de novo docking based on the 
structures of the generated models but this will have to be 
validated by experimental data. As part of a continuing 
project on the development of a dendritic cell vaccine for 
COVID-19, the next stage would be the in vitro validation of 
the immunogenicity of each candidate peptide.

2. Morawska L, Milton DK. (2020) It is Time to Address 
Airborne Transmission of COVID-19. Clinical 
Infectious Diseases, (ciaa939). 

epitopes may not be enough to result in actual binding to the 
selected TCRs. In addition to the limited data on epitope-
specific TCRs, these make the selection of appropriate TCR 
sequences for TCR-pMHC modeling a major limitation of this 
study [75]. The development of computational tools for the 
prediction of TCRs that can recognize a given pMHC complex, 
perhaps by incorporating TCR epitope sequence data as well 
as determinants of TCR promiscuity, could improve in silico 
approaches of vaccine design.

Other factors that could influence the T cell response to 
the predicted SARS-CoV-2 epitopes include conformational 
dynamics and kinetic stability of the pMHC and TCR-pMHC 
complexes [76-79]. Furthermore, multiple TCRs can 
recognize a given epitope  [80,81]. The study did not 
account for TCR avidity since only one TCR was evaluated 
per peptide. Experimental studies, such as in vitro IFN-γ 
production of T cells, would have to be conducted to 
validate whether these peptides indeed elicit immune 
responses. It would be interesting to determine whether 
experimental data correlate well with the results presented 
in this study, and which among the methods used produced 
more accurate results. 

Conclusions
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