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Abstract

Background: The biological activity of a compound is assumed to be encoded in its chemical composition and 
geometric structure, from which physico-chemical, electrotopological, and graph theory-derived properties 
can be determined. 
Objective: This study aimed to identify the molecular descriptors derived from Dragon® 6 software that can 
discriminate compounds as drug or nondrug.
Methodology: Over 4000 molecular properties were obtained for approximately 2000 known drugs and 2000  
nondrugs on which Linear Discriminant Analysis was performed.
Results: Compounds can be discriminated between drug and nondrug with 81% accuracy using only two 
molecular descriptors, the information index HVcpx and the topological index MDDD. 
Conclusion: A “Rule of Three” (HVcpx ≤ 3 and MDDD ≥ 30) seems to confer druglikeness in compounds. This 
rule can be used as additional filter in high throughput screening of compounds in any drug discovery research.
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R E S E A R C H     A R T I C L E

Introduction

The properties of small molecules have been analyzed in 
efforts to find the essential factors required to produce good 
lead compounds in drug discovery [1,2]. An illustrious 
development in medicinal chemistry is the seminal paper of 
Lipinski on Rule of Five (RO5) which characterizes most orally 
bioavailable drug candidates [3,4]. The original RO5 covers 
orally active compounds and specifies critical range of values 
for four simple physico-chemical parameters (i.e. molecular 
weight, MW ≤ 500; octanol-water partition coefficient, log P 
≤ 5, hydrogen-bond donors, HBD ≤ 5, hydrogen-bond 
acceptors, HBA ≤ 10) satisfied by 90% of orally active drugs 
that have reached the phase II clinical stage.  The RO5 has 
been modified by Veber and co-workers, who discovered that 
the optimum number of rotatable bonds (NROT) is 7 and that 
the NROT must not exceed 10 for a compound to display 
good oral bioavailability [5]. Clark and Pickett also 
demonstrated that polar surface area (PSA) is another key 
property [6]. They proposed that the PSA should not exceed 
140 Å2 to avoid the problem of low oral bioavailability. 

Moreover, several accounts are confronting the issues 
facing the compounds that are identified by screening of 

small molecule libraries. One novel alternative approach 
that is gaining wider acceptance is 'fragment-based' 
discovery [7,8,9]. In fragment-based lead discovery, small 
chemical fragments are allowed to weakly bind to the 
biological target and then are allowed to grow or joined 
together to produce a lead with higher affinity. The hits 
identified in this method generally obey a 'Rule of Three', 
which could be utilized in the construction of fragment 
libraries for lead generation. Congreve and co-workers 
carried out an analysis of a diverse set of fragment hits that 
were identified against a range of targets and found that the 
hits seemed to follow a 'Rule of Three' in which molecular 
weight was ≤ 300, the number of hydrogen bond donors was 
≤ 3, the number of hydrogen bond acceptors was ≤ 3 and 
ClogP was ≤ 3, number of rotatable bonds, NROT (≤ 3) and 
polar surface area, PSA (≤ 60). These findings indicate that a 
'Rule of Three' could be used to speed up the screening of 
fragments for efficient lead discovery.

Aside from the abovementioned simple parameters 
associated with oral bioavailability, an enormous number of 
physico-chemical, electrotopological and graph theory-
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derived molecular descriptors [11] can be generated from 
the composition and structure of a compound. A 
cheminformatics software DRAGON® [12-13], for example, 
is capable of generating over 4000 molecular descriptors per 
molecule.  The descriptors can be classified as constitutional 
(0D) properties; 1D descriptors (e.g. functional groups, atom 
centered fragments, information and properties 
descriptors; 2D descriptors (e.g. topological, molecular walk 
counts, Burden eigenvalues, eigenvalue-based indices, 
topological charge indices, connectivity, edge adjacency and 
2D autocorrelation descriptors); and 3D descriptors namely, 
charge, Randic molecular profiles, geometry, RDF, 3D-
MoRSE, WHIM, and GETAWAY descriptors [11].

Recently, the utility of these molecular descriptors in 
predicting the inhibitory activity of curcumin analogues as 
anti-proliferative agents of human prostate cancer cell Line 
(PC-3) [14], dihydroquinazoline derivatives of Retro-2cycl 
against Shiga toxin [15], and dihydrothiophenones against 
dihydroorotate dehydrogenase of malaria parasite [16] has 
been demonstrated. Moreover, by performing cluster 
analysis, key molecular descriptors that allow segregation of 
anti-inflammatory drugs into COX-2 selective and nonselective 
inhibitors have been identified [17].

The identification of key molecular properties that 
confer druglikeness has been a long-standing goal in drug 
discovery. The activity of many drugs, for instance, has been 
strongly correlated with properties that promote oral 
bioavailability such as those featured in the Lipinski Rule of 
Five (Ro5). However, meeting the requirements of RO5 does 
not guarantee druglikeness. The limited scope of RO5 and 
its variants has prompted the search for key molecular 
properties that could discriminate known drugs from 
nondrugs. Specifically, this work examined two sets of 
compounds - approved drugs from DrugBank and nondrugs 
that were randomly selected from the Enamine database of 
synthetic compounds. The 3D structure of each compound 
was optimized, and the molecular descriptors for each 
compound were calculated using Dragon 6 software. 
Subsequently, discriminant analysis was performed on 
these compounds in order to identify the crucial molecular 
properties that discriminate between drugs from nondrugs. 

Methodology

All computational works were performed in a personal 
computer running on Microsoft Windows 7 Professional 64-bit 
Operating System using a 3.50-GHz Intel Core i7-4770K 
processor with 8.00-GB random access memory. The structures 

of approved drugs were retrieved from the DrugBank database 
(http://drugbank.ca) while the set of nondrugs was obtained 
through random selection of entries in the Enamine HTS 
Collection database (https://enamine.net). The structures were 
drawn using MarvinSketch (https://chemaxon.com) and saved 
in .mol format. The generation of the 3D structures of the 
compounds was performed using the CHARMm force field in 
BIOVIA Discovery Studio (DS) (http://3dsbiovia.com). Each 
structure was saved as standard database format (.sdf) file. 

The molecular descriptors were calculated using the 
Dragon 6 software (https://chm.kode-solutions.net), which 
calculates over 4000 descriptors per molecule. The data set 
was cleaned by deleting rows (compounds - drugs or 
nondrugs) and columns (variables or descriptors) of the 
data file that are duplicate compounds or with at least one 
NAN (i.e. Not A Number) entries, descriptors with invariant 
values or with mostly zero values. Thus, the original number 
of approved drugs of 1887 was reduced to 1792 and 
correspondingly the 2000 nondrugs reduced to 1792, by 
random selection, making a total of 3584 compounds; and 
from 4888, the number of variables was also reduced to 
2 4 5 . L i n e a r  D i s c r i m i n a n t  A n a l y s i s  u s i n g  S P S S 
(https://www.ibm.com) was performed on a data set 
consisting of 3584 rows (compounds) and 245 columns 
(descriptors) vide infra.                 

Results and Discussion

The development of bioactive molecules into therapeutic 
agents is an important step in drug discovery. It is in the lead 
drug development stage where most bioactive molecules get 
eliminated due to problems primarily associated with 
bioavailability.  Unfortunately, this phase in drug discovery is 
typically reached only when a substantial amount of efforts 
and resources has already been expended in discovering new 
leads and their variants. In order to prevent the high attrition 
rate at the later stages of drug discovery, few screens that can 
discriminate potentially nondruglike compounds in the 
clinical phase have been introduced even at the hit discovery 
stage so that only those bioactive hits with no serious ADMET 
(absorption, distribution, metabolism, excretion, toxicity) 
issues are forwarded for further development.

Linear Discriminant Analysis (LDA) was performed in 
order to classify compounds as drug or nondrug and identify 
the essential properties of compounds that are associated 
with druglikeness. “Group” referring to drug group, as 
dependent variable, was assigned a value of “1” for drugs 
and “0” for nondrugs. Initially, LDA was carried out using 
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backward stepping method involving all the 245 descriptors. 
This generated a discriminant function (DF) consisting of 42 
descriptors that correctly classifies a compound as drug or 
nondrug with 92% overall accuracy. LDA was done 42 times 
more with these descriptors involving 1 descriptor at a time 
and the 5 descriptors with the least prediction accuracy were 
identified and subsequently deleted. The prediction 
accuracy of the resulting 37-predictor DF remained at 92%. 
With the 37 remaining descriptors, another round of 37 DA 
runs was done with 36 descriptors (i.e. 37 – 1) removing one 
descriptor every run. This round identified 8 descriptors with 
the least contribution in the classification of drugs. 
Removing these from the DF reduced the prediction 
accuracy by only 0.2%. With the remaining 29 descriptors 
succeeding several rounds were done which allowed the 
removal of 12 more descriptors with only roughly 2% 
reduction in accuracy, now with only 17 descriptors the 
accuracy of prediction was still 90.3%. More rounds were 
done and more descriptors with the least contributions in 
prediction were subsequently removed from the DF. With 
only six descriptors left in the DF namely, nHet, NNRS, ON0, 
ON0V, MDDD, and HVcpx, the overall accuracy of prediction 
was still high at 85% (Table 1), correctly classifying 93% of 
nondrugs and 77% of drugs (Figure 1). 

Table 1. Results of the Classification of Compounds by Discriminant Analysis of a Six-Predictor Discriminant Function

a,cClassification Results

Predicted Group Membership Total

Group 0 1

Original Count 0 1661 131 1792

1 410 1382 1792

% 0 92.7 7.3 100.0

1 22.9 77.1 100.0

bCross-validated Count 0 1661 131 1792

1 414 1378 1792

% 0 92.7 7.3 100.0

1 23.1 76.9 100.0

a. 84.9% of original grouped cases correctly classified.
b. Cross-validation is done only for those cases in the analysis. In cross-validation, each case is classified by the functions derived from all 
cases other than that case.
c. 84.8% of cross-validated grouped cases correctly classified.

Figure 1.  Prediction Accuracy of Equation 1 for Nondrugs 
(above) and Drugs (below)
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The discriminant function, z, involving 6 predictors, is given 
in Equation 1.

z = 0.70 nHet + 1.52 NNRS – 0.72 ON0 + 0.70 ON0V 
      – 0.08 MDDD + 3.18 HVcpx – 9.09                                                                           

(Equation 1)
where:   nHet – number of heteroatoms
   NNRS – normalized number of ring systems
               ON0 – overall modified Zagreb index of order 0
               ON0V – overall modified Zagreb index of order 0 by 
                             valence vertex degrees
              MDDD – mean distance degree deviation
              HVcpx – graph vertex complexity index

In order to predict whether a compound will likely be a 
drug or not, one only needs to determine the value of these 
predictors for a compound and use the above DF to 
calculate the z value. If z is negative, the compound is 
classified as a drug, albeit this prediction is only true for 
roughly 8 out of 10 compounds. The DF shows that small 
values of nHet, NNRS, ON0V, and HVcpx, and large values of 
ON0, and MDDD will make z value small that will result in 
classifying a compound as a drug. 

The nHet descriptor is a constitutional index that 
describes the number of heteroatoms (i.e. not C or H) in a 
molecule [18]. For example, in the drug paracetamol or 
acetaminophen with a chemical formula of C₈H₉NO₂, the 
nHet value is 3 due to one N and two O atoms present in the 
molecule. The heteroatoms, which often define the 
functional groups in the molecule, are usually the hot spots 
of chemical reactivity. NNRS is a ring descriptor that stands 
for normalized number of ring systems [18]. The ring 
portions in the molecule provide structural rigidity, which 
can be useful for anchorage or precise disposition of 
functional groups during interaction with a biological target. 

On0 and ON0V are Zagreb-originated topological indices 
based on a graph generated from the structure of the 
molecule by replacing atoms with vertices and bonds with 
edges [19]. The original Zagreb indices M₁ and M₂ are simply 
the summation of the square of vertex degrees and the 
summation of the product of vertex degrees connected by 
an edge, respectively [20]. The drawback with the Zagreb 
indices is that they place more weight on the inner vertices 
and edges of a graph, contrary to chemical intuition which 
puts more importance on outer vertices and edges because 
they are associated with a larger part of the molecular 
surface. This defines the molecular size, volume, and shape, 
properties that are expected to make greater contribution 
to the physical, chemical, and biological properties of the 

molecule [20]. The amended Zagreb indices, called modified 
Zagreb indices �M₁ and �M₂, use the inverse values of the 
vertex degrees [20]. �M2 is identical to the first-order 
overall index ¹ON descriptor introduced by Bonchev [21]. 
The ON0 descriptor is the overall modified Zagreb index of 
order 0, whereas ON0V is the overall modified Zagreb index 
of order 0 by valence vertex degrees, a Zagreb index 

ω
calculated using valence vertex degree δ , in place of simple 
vertex degree. Zagreb indices have been utilized in modeling 
the boiling point of alkanes [20]. Since the boiling point of a 
compound depends primarily on the strength of the 
intermolecular interaction, the Zagreb indices and their 
successors can be related with relevant properties such as 
polarizability, solubility, octanol-water partition coefficient 
(logP), etc.,

The mean distance degree deviation (MDDD or ∆σ) is 
defined as:

(Equation 2) 
where A is the number of atoms, σ  is the vertex distance i

degree (i.e. the sum of topological distances d , the sum of ij

the distances of all the other atoms j to atom i), and σ is the 
mean vertex distance degree [19]. Terminal vertices are 
observed to have high values of vertex distance degree  
compared to central vertices. In addition, the vertex 
distance degree is small if the vertex is near a branching site 
compared to a terminal vertex that is far away from it [19]. 
Lastly, HVcpx is an information index called graph vertex 
complexity index. It is defined by the equation [22,23]:

(Equation 3) 
where           is the vertex complexity for vertex i given by:

(Equation 4)
In Equation 4, σ(v ) is the eccentricity of vertex i, that is, the i

maximum graph distance between vertex i and any other 
vertex in the graph.  A is the number of atoms or vertices, 
and each vertex i has j k-neighbors that are k steps away. 
HVcpx apparently encodes the steric aspect of the molecule.

In the stepwise removal of descriptors from the DF, the 
reductions in prediction accuracy were noted. With only 
3% reduction in accuracy, NNRS turned out to have the 
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smallest contribution to prediction, followed by nHet, 
ON0V, ON0, MDDD, and HVcpx, in order of increasing 
contribution. The removal of either MDDD or HVcpx 
drastically reduced the prediction accuracy  by around 
10%. Then an LDA with only these two predictors was done 
and it showed a prediction accuracy of 81% (Table 2).

The DF with these two predictors, HVcpx and MDDD, is 
given in Equation 5.

z =  4.58 HVcpx – 0.12 MDDD – 12.09                                            
  (Equation 5)

This correctly classifies 91% of nondrugs and 71% of 
drugs. In particular, Equation 5 correctly classified 1273 of 
the 1792 drugs and 1635 of the 1792 nondrugs (Figure 2) in 
the data set. The prediction accuracy of the DF is 66% with 
HVcpx alone as predictor, and 48% with MDDD alone.  
Interestingly, MDDD is one of the topological indices, which 
were proven effective in discriminating between drugs and 
nondrugs in a study employing artificial neural network [24].

The HVcpx values exhibit normal distributions with 
skewness values of -0.776 and -0.111 for the nondrugs and 
drugs, respectively; and 96% of the values from each group 
fall within two standard deviations from their corresponding 
means, 3.328 ± 2(0.214) and 3.101 ± 2(0.476) (Figure 3 and 
Figure 4). Except for only 4%, the HVcpx values of nondrugs 

are at least 2.90, and most values are greater than 3.25. 
Thus, it is quite safe to classify a compound with an HVcpx 
value of less than 3.00 as a drug.  In the data set, only 147 out 
of 1792 (or 8.2%) nondrugs have HVcpx values below 3.00 

Table 2. Results of Classification of Compounds by Discriminant Analysis of a Two-Predictor Discriminant Function

a,cClassification Results

Predicted Group Membership Total

Group 0 1

Original Count 0 1635 157 1792

1 519 1273 1792

% 0 91.2 8.8 100.0

1 29.0 71.0 100.0

bCross-validated Count 0 1635 157 1792

1 519 1273 1792

% 0 91.2 8.8 100.0

1 29.0 71.0 100.0

a. 81.1% of original grouped cases correctly classified.
b. Cross validation is done only for those cases in the analysis. In cross validation, each case is classified by the functions derived from all 
cases other than that case.
c. 81.1% of cross-validated grouped cases correctly classified.

Figure 2.  Prediction Accuracy of Equation 2 for Nondrugs 
(above) and Drugs (below)
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and misclassified as drugs. For the drugs group, 757 or 42.2% 
have HVcpx values below 3.00. Thus, using HVcpx ≤ 3 as a 
criterion for druglikeness, two-thirds (2402 out of 3584) of 
the compounds are correctly classified. However, an HVcpx 
value above 3.00 may not necessarily mean that a 
compound is a nondrug as more than half of the drugs have 
HVcpx values above 3.00.

The MDDD values are also normally distributed with 
skewness of 0.06 and 2.11 for nondrugs and drugs, 
respectively; and around 96% of the values from each group 
fall within two standard deviations from their corresponding 
means, 20.35 ± 2(5.64) and 22.22 ± 2(17.62), with the drugs 

Finally, these results show that the known drugs, when 
compared to representative synthetic organic compounds 
from Enamine HTS Collection, somewhat obey a “Rule of 
Three”:  HVcpx ≤ 3 and MDDD ≥ 30.

Conclusion

Using Discriminant Analysis, this study revealed six 
properties (i.e. nHet, NNRS, ON0, ON0V, MDDD, and HVcpx) 
that can correctly classify 85% of compounds as drug or 
nondrug. Together, HVcpx and MDDD can discriminate 81% 
of the compounds; the predictor HVcpx alone correctly 
classifies two-thirds of the compounds.  The juxtaposition in 
this study of approved drugs in DrugBank and synthetic 
compounds in Enamine HTS Collection squeezed out a kind 
of “Rule of Three” (HVcpx ≤ 3, MDDD ≥ 30) criteria for 
druglikeness. These may be used as filters in the hit discovery 
phase to help minimize the costly high attrition rate of 
candidates at the later stage of the drug discovery process.
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