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Objective  In  tongue  diagnosis,  the  location,  color,  and  distribution  of  spots  can  be  used  to
speculate on the viscera and severity of the heat evil. This work focuses on the image analysis
method  of  artificial  intelligence  (AI)  to  study  the  spotted  tongue  recognition  of  traditional
Chinese medicine (TCM).
Methods  A  model  of  spotted tongue recognition and extraction is  designed,  which is  based
on  the  principle  of  image  deep  learning  and  instance  segmentation.  This  model  includes
multiscale feature map generation, region proposal searching, and target region recognition.
Firstly, deep convolution network is  used to  build multiscale  low- and high-abstraction fea-
ture  maps after  which,  target  candidate  box generation algorithm and selection strategy  are
used to select high-quality target candidate regions. Finally, classification network is used for
classifying target regions and calculating target region pixels. As a result, the region segmenta-
tion  of  spotted  tongue  is  obtained.  Under  non-standard  illumination  conditions,  various
tongue images were taken by mobile phones, and experiments were conducted.
Results  The  spotted  tongue  recognition  achieved  an  area  under  curve  (AUC)  of  92.40%,  an
accuracy  of  84.30%  with  a  sensitivity  of  88.20%,  a  specificity  of  94.19%,  a  recall  of  88.20%,  a
regional pixel accuracy index pixel accuracy (PA) of 73.00%, a mean pixel accuracy (mPA) of
73.00%,  an  intersection  over  union  (IoU)  of  60.00%,  and  a  mean  intersection  over  union
(mIoU) of 56.00%.
Conclusion  The results of the study verify that the model is suitable for the application of the
TCM tongue diagnosis system. Spotted tongue recognition via multiscale convolutional neur-
al  network  (CNN)  would  help  to  improve  spot  classification  and  the  accurate  extraction  of
pixels  of  spot  area  as  well  as  provide  a  practical  method  for  intelligent  tongue  diagnosis  of
TCM.

 
 

1 Introduction

In  the  objective  research  of  tongue  diagnosis,  the  study

of  the  methods  used  to  identify  and  judge  the  different

features  of  tongue  image  is  critical [1].  Spotted  tongue
refers to the pathological feature of swelling of fungiform
papillae [2].  Tongue  spots  includes  dots  (red,  white,  and
black), thorns (red spots like awn, which can be touched)
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and  petechia  (bluish-purplish  or  bluish-darkish  spots).
According to  the location of  spots,  the viscera of  the evil
heat can be inferred. The color and density of spots indic-
ates the degree of heat evil, which has pathological signi-
ficance for tradition Chinese medicine (TCM) tongue dia-
gnosis.

The  recognition  and  judgment  of  spotted  tongue  has
always  been  valued  by  researchers.  Some  scholars,  such
as XU et al. [3], LI et al. [4], WANG et al. [5], have studied the
computer  recognition  methods  of  spots  on  the  tongue
and  achieved  recognition  results  by  capturing  images
with  high-definition  cameras  under  auxiliary  light.  This
kind of method [3-5] is based on the principle of image spot
detection,  using  color  threshold,  fuzzy  clustering,  and
support  vector  machine  (SVM)  classification,  however,
due  to  the  disadvantages  of  high  sample  dependency,
challenges  in  establishing  parameters,  and  poor  algori-
thm  robustness,  so  it  is  difficult  to  use  in  practice.  With
the development  of  artificial  intelligence  (AI),  new  tech-
nology  has  been  provided  for  tongue  image  recognition
and extraction [6-8]. In recent years, deep learning and con-
volutional  neural  network  (CNN)  have  been  applied  to
the  TCM  feature  analysis  method  of  tongue  images [9-16]

and achieved better  recognition accuracy than image al-
gorithms and machine learning.

However,  the  irregular  distribution  of  spots  on  the

tongue, the large difference between the size of spots and
the tongue, and the small difference between the color of
the  spots  and  the  tongue  under  natural  light  conditions,
etc., are the difficulties and challenge of automatic recog-
nition  for  spotted  tongue [17]. In  this  study,  a  tongue  im-
age  prickle  recognition  and  extraction  model  based  on
image  deep  learning  and  case  segmentation  principle  is
established,  which is  suitable for the application of  TCM
tongue  diagnosis  system.  This  model  can  help  improve
spot classification and the accurate extraction of pixels of
spot area as well as provide a practical method for the in-
telligent tongue diagnosis of TCM. 

2 Designing the spotted tongue recognition model

The  proposed  model  mainly  includes  multiscale  feature
map generation,  candidate  region  search,  and  target  re-
gion  recognition.  Firstly,  deep  convolution  network  is
used to build multiscale low and high abstraction feature
maps after  which,  target  candidate  box  generation  al-
gorithm  and  selection  strategy  are  used  to  select  high-
quality  target  candidate  regions.  Finally,  classification
network is used for classifying target regions and calculat-
ing target region pixels. As a result, the region segmenta-
tion of  spotted  tongue  is  obtained.  The  realization  pro-
cedure is shown in Figure 1.
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Figure 1   Network structure and computation of the spotted tongue recognition model
Conv represents the convolution; Lcls1 represents loss of classify for the candidate region; Lreg1 represents loss of bounding-box regres-
sion for the candidate region; Lcls2 represents loss of classify for target candidate region; Lreg2 represents loss of bounding-box regres-
sion for target candidate region; Lmask represents loss of pixel mask for target candidate region.
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2.1 Multiscale feature map
 

2.1.1  Building  low-abstraction  feature  map  C　This
study uses the classic ResNet-50 [18] (PyTorch pre-trained
ResNet-50 v1.5)  as  the backbone network.  The output  of
residual module, including conv2, conv3, conv4, conv5, is
regarded  as  low-abstraction  feature  map  set  and  C  {C2,
C3, C4, C5} is used to indicate the map set. Their charac-
teristic  scales  are  200 ×  200,  100 ×  100,  50 ×  50,  25 ×  25,
which have a step size of {4, 8, 16, 32} pixels relative to the
input image. 

2.1.2  Building  high-abstraction  feature  map  P　A fea-
ture map with higher resolution is obtained by twice up-
sampling  on  the  high-level  feature  map  of  low-abstrac-
tion  map  set  C,  and  then  the  feature  map  was  laterally
connected with  the  corresponding  low-abstraction  fea-
ture map by element-wise addition operations. This itera-
tion  continue  until  the  shallowest  convolution  map  is
concatenated. Finally, the 3 ×  3 convolution of all concat-
enated  feature  map  eliminates  the  aliasing  effect  of  up-
sampling.  As  a  result,  the  high-abstraction  feature  map
P {P2, P3, P4, P5} is obtained.

This multiscale high-abstraction feature map is  more
robust in the face of differently sized detection targets, es-
pecially in terms of not missing small targets. 

2.2 Candidate region searching
 

2.2.1  Generating  anchor  boxes　The  window  on  the
high-abstraction feature map P is first slid, after which the
center point, which is mapped by each pixel base on fea-
ture map, of the receptive field on original image is taken
as  the  reference  point.  Twelve  anchor  boxes  of  different
aspect  ratios  and  areas  around  the  reference  point  are
then selected.  The initial  anchor box contains four areas
(4, 8, 16, 32) with each area containing three aspect ratios
(1∶1, 1∶2, and 2∶1). 

2.2.2 Anchor box classified prediction　A classified train-
ing  label  for  is  generated  each  anchor  box,  with  each
label  containing  zero  negative  sample  (target  isn’t
covered) and one positive sample (target is covered). The
strategy  of  label  assignment  is  as  follows:  labels  are
labeled  by  an  intersection  over  union  (IoU)  overlap
between prediction box and ground-truth box, where the
ground-truth box exists in the training set of manual cal-
ibration. 

2.2.3  Selecting  target  proposal  regions　The  score  and
bounding  box  regression  of  the  candidate  box  with  the
prediction tag of one are converted to the proposal target,
and the high-quality proposal regions are selected. To se-
lect  proposal  regions,  the  edges  of  proposal  regions  that
exceed  the  image  boundary  are  trimmed  to  ensure  that
the  target  proposal  regions  are  within  the  range  of  the

image. Next,  all  proposal regions are sorted from high to
low by  positive  region  scores  to  get  the  first  12  000  pro-
posal  regions.  Finally,  overlapping  proposal  regions  are
eliminated  using  non-maximum  suppression  to  get  the
first 3 000 as target proposal regions. 

2.2.4 Extracting features of target proposal regions　Ac-
cording  to  its  scale  (width  and  height),  the  coordinate
area  is  extracted  from  the  feature  map  corresponding  to
the high-abstraction feature map P for each proposal re-
gion. The target proposal regions are pooled into propos-
al region feature maps of 7 ×  7 and 14 ×  14 using the local
area  average  pooling  algorithm  region  of  interest  (RoI)
ExactPooling, which  is  the  improved  algorithm  com-
pared  with  RoI  Pooling [19] and  RoI  Align [20]. Table  1
presents the RoI ExactPooling algorithm features. 

2.3 Recognising the target region
 

2.3.1  Classifying  the  target  region　A  classified  training
label is generated for each RoI with each label containing
zero  negative  samples  (target  isn’t  covered)  and k posit-
ive  samples  (target  classes k = 3,  indicating  dot,  thorn,
and petechia). For tag assignment, there are ground-truth
boxes of manually labeled spots on each image in tongue
image training set. The IoU of the overlap ratio of predic-
tion box and ground-truth boxes assists this process. 

2.3.2 Correcting the border of target region　The border
position of the target region is regressed with high classi-
fied  score  after  which,  the  horizontal  translation  offset
and  the  height-width  scaling  offset  of  the  corrected  box
relative to the prediction box is estimated. Predictive off-
set  of  candidate  region ti = {tx, ty, tw, th}  (tx, ty represents
the  translation  offset  in x direction  and y direction,  and
tw, th represents  the  scaling  offset  of  the  width  and
height). 

2.3.3 Calculating the target region mask　A link is made
to fully  convolutional  networks to generate a region bin-
ary  mask  for  each  target  class  to  obtain  pixel  masks  of
each  target,  which  are  the m  ×  m binary  masks  of k
classes  (m  ×  m is  the  resolution  of  the  target  area, m =
14). Finally, the result is mapped to the original image to
obtain  the  inspected  target  and  region  segmentation
pixel. 

2.4 Loss function for each module
 

2.4.1  Loss  of  proposal  region  generation  network　The
loss  of  classify  Lcls1 and  loss  of  bounding-box  regression
Lreg1 for candidate region constitute loss of  the proposed
region generation network. The definition of this network
loss function is shown in Table 2 .

Total loss Lpro of the proposed region generation net-
work can be obtained as follows.

Lpro(pi, ti) =
1

256

∑
Lcls1(pi, p∗i )+

1
128

∑
p∗i Lreg1(ti, t∗i ) (1)
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2.4.2 Loss  of  target  candidate  region  recognition  net-
work　The  loss  of  classify  Lcls2,  loss  of  bounding-box

regression  Lreg2,  and  loss  of  pixel  mask  Lmask for  target

candidate region  constitutes  a  loss  of  the  target  candid-

ate region recognition network. The definition of this net-

work loss function is shown in Table 3.

Total  loss  Ltar of  target  candidate  region  recognition

network can be obtained as follows.

Ltar(pi,u, ti, t∗i ) =
∑

Lcls2(pi,u)+ [u⩾1]
∑

Lreg2(ti, t∗i ) +∑
Lmask(m,k) (2)

 

2.5 Quantifying the spotted tongue indicator
 

2.5.1 Dividing the image of the tongue area　The tongue
is first divided according to the method of the tongue and
viscera  of  LI  et  al. [21] which calculates  the  external  rect-
angle  of  the  tongue.  The  left  one  fifth  area  is  the  tongue
left  margin,  the  right  one  fifth  area  is  the  tongue  right
margin, the top one fifth area is the tongue root, the bot-
tom  one  fifth  area  is  the  tongue  tip,  and  finally,  the
middle area is the tongue center. See Figure 2 for a visual
representation of how the tongue is divided. 

2.5.2  Quantifying  the  degree  of  spots  indicator　For
quantitative  indicators  of  the  whole  tongue  and  the

Table 1   The improved local area mean-pooling algorithm

Algorithm Feature of mapping in candidate region Feature

RoI Pooling ∑⌈x2⌉
i=⌊x1⌋

∑⌈y2⌉
j=⌊y1⌋wi, j

(⌈x2⌉− ⌊x1⌋+1)(⌈y2⌉− ⌊y1⌋+1)

⌈ ⌉
⌊ ⌋

Round  the  feature  point  to  integer  number  before  mean-
pooling

wi, j is the pixel value of i, j position in the region from (x1, y1) to
(x2,  y2);   represents  returning  the  ceiling  of  variable  as  an
integral;   represents  returning the  floor  of  variable  as  an
integral

After  two  rounds,  the  spatial  deviation
between  the  proposed  region  of  the
pooled feature map and of  the original
image is obvious; as a result, that we can’t
achieve accurate pixel prediction cannot
be achieved

RoI Align

4∑
i=1

bilinear (ai, bi)
4

Sample four  points  for  each mapped region using bilinear
interpolation;  conduct  the  mean  pooling  of  the  sampling
points

where (ai, bi) is the coordinate of the sampling point

Retain the decimal;  by sampling fitting,
the  feature  map  is  aligned  with  the
proposal  region  of  the  original  image,
enabling  pixel-level  prediction  to  be
performed

RoI

ExactPooling rr
x1 ⩽ x ⩽ x2

y1 ⩽ y ⩽ y2

bilinear(x, y)dxdy

(x2− x1)(y2− y1)rr

Conduct the mean pooling of all feature points in the interval
where each mapped region is

: double integral over rectangular region from the minimum
point (x1, y1) to the maximum point (x2, y2); dx, dy represents
the differentials of x and y

The pixel deviation between the feature
map  and  the  proposal  region  of  the
original  image  is  reduced  and  the
precision is high without increasing the
calculation amount

Table 2   The definition of loss function for the proposed region generation network

Module Training data Loss function

Classifying the
candidate region

Training  set  randomly  takes  128
positive samples (IoU > 0.7 ) and 128
negative  samples  (  IoU  <  0.3  );
insufficient  positive  samples  are
supplemented with negative samples

Lcls1(pi, p∗i ) = − log [pi p∗i + (1− p∗i )(1− pi)]

pi

p∗i
Lcls1: loss of classify for the candidate region; : probability of
prediction as positive; : 1 indicates the positive sample, and 0
indicates the negative sample

Bounding-box
regression for the
candidate region

Select 128 random positive samples Lreg1(t, t∗) =
∑

i∈{ x,y,w,h}
smoothL1(ti− t∗i )

ti =
{

tx, ty, tw, th

}
t∗i

smoothL1(x)

smoothL1(x) =
{

0.5x2, if |x| < 1
|x| −0.5, if |x| ⩾ 1

Lreg1: loss of bounding-box regression for the candidate region;

: predictive offset of candidate region; : offset
between candidate box and ground-truth box; a smooth L1 function

 is defined as
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various areas, (i) none: the number of spots is zero; (ii) a
little: the number of spots is less than five; (iii) more: the
number of spots is more than five and less than ten; and
(iv) a lot: more than ten. 

3 Training and testing the model
 

3.1 Spotted tongue image dataset

The  spotted  tongue  image  dataset  contains  2  000
samples. These images are taken by nine kinds of phones
and under  different  natural  light  or  artificial  light  to  re-
cord multiple  tongue  postures  whilst  also  providing  dif-
ferent backgrounds and resolutions. Data pre-processing
is as follows. 

3.1.1  Labeling  spots  in  the  sample　Several  of  the  TCM
doctors, who  were  divided  into  in  three  batches,  recog-
nised spots on the tongue image. The recognition results

were collected  into  the  database  through  the  same  re-
view method.  A spotted tongue dataset  of  2  000 samples
was annotated and the statistical results of the labels were
33 378 dots, 11 649 thorns, and 1 219 petechiaes. 

3.1.2  Data  augmentation  in  computer  vision　To  make
the training data set generic, data augmentation is imple-
mented  at  random  for  samples  with  combinations  of
image  rotation  (random  angle  between﹣90°  and  90°),
scaling (random  multiple  between  80%  and  120%),  flip-
ping (up and down, horizontal mirror) and contrast (ran-
dom  multiple  between  0.5  and  2).  The  dataset  expands
50 times after data augmentation. 

3.2 Training model

The  ratio  of  training  set∶validation  set∶test  set  is
5∶3∶2. The training and validation sets are used to fin-
ish network model  learning,  optimize  model  parameters
and  identify  the  best  network  depth  whereas  the  test  set
analyses  the  performance  of  model.  Microsoft  Common
Objects in Context (MSCOCO) pre-training network para-
meters [22] are used  for  initialization  and  alternate  train-
ing  methods  are  used  for  the  generation  network  of
proposal regions and the calculation network of target re-
gions. The training model is the first generation. 

3.2.1  Initializing  data　According  to  the  tongue  dataset
and  the  label  of  spots  on  tongue,  the  ground-truth  box
and object  mask of  target  labeled on each image for  cal-
culating losses during the training phase is generated. 

3.2.2 Training by fine tune method　Fine tune training is
used for the proposal region generation network and the
target  region  recognition  network  to  ensure  that  they
share the convolutional  layer and reduce the calculation

Table 3   The definition of loss function for target candidate region generation network

Module Training data Loss function

Classifying the target
candidate region

Label target class in
the training set Lcls2(pi,u) = − log

[
epi∑k
i=1 epi

]
Lcls2: loss of classify for target candidate region; pi : score of prediction as target

category; u: tag encoding of the labeled target; e ≈ 2.718 28; k =  3, indicating dot,
thorn, and petechia

Bounding-box
regression for the
target candidate
region

Label the target
border in the training
set

Lreg2(t, t∗) =
∑

i∈{ x,y,w,h}
smoothL1(ti− t∗i )

ti =
{

tx, ty, tw, th

}
t∗i

smoothL1(x)

smoothL1(x) =

{
0.5x2, if |x| < 1

|x| −0.5, if |x| ⩾ 1

Lreg2: loss of bounding-box regression for target candidate region;
: predictive offset of candidate region; : offset between

candidate box and ground-truth box; a smooth L1 function
 is defined as

Pixel mask of the
candidate region

Label the pixel of the
target  region  in  the
training set

Lmask(m,k) = −log
m∑

i=1
[pi p∗i + (1− p∗i )(1− pi)]

pi p∗i
Lmask: loss of pixel mask for target candidate region; m: pixel amount of region;

: probability of pixel prediction; : pixel tag
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Figure  2    The  method  of  dividing  the  tongue  into  five
areas
A,  D,  and  G  regions  are  the  tongue  left  margin;  B  region  is  the
tongue  root;  C,  F,  and  I  regions  are  the  tongue  right  margin;  E
region is the tongue center; and H region is the tongue tip.
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amount.  The  algorithm  is  trained  and  fine  tune  learning
with the following four steps.

Step  1:  the  MSCOCO  pre-training  model  is  used  for
network  initialization  and  training  the  proposal  region
generation network (for region recommendations).

Step 2: network parameters in step 1 are used for gen-
erating  the  proposal  region  and  the  MSCOCO  pre-train-
ing  model  is  used  for  network  initialization  and  training
the target region calculation network (for detection).

Step  3:  the  proposal  region  generation  network  is
reinitialized  using  the  target  region  calculation  network
after  fine  tuning  in  step  2.  Only  the  layer  unique  to  the
proposal region generation network is fine tuned. This is
done  with  the  shared  convolutional  layer  fixed  after
which the shared convolution layer will form.

Step 4:  only the layer  unique to the target  region cal-
culation network is fine tuned using subsequent region in
step  3  with  the  shared  convolutional  layer  fixed  after
which, the unified network will form. 

3.2.3  Optimizing  hyper-parameters  of  network　First,
the input image size is fixed and select different learning
rates  and  RoI  scaling  parameters  (Table  4)  are  selected.
Then, experiments are conducted on the multiscale CNN
and the loss changes of  multiscale CNN trained by three
groups of parameters are compared. The loss of No. 3 de-
creases faster than that of No. 1 and No. 2 and therefore,
the parameters of No. 3 are selected, as shown in Figure 3.
Choosing  a  set  of  the  optimal  hyper-parameters  is  as
follows:  (i)  IoU  is  set  to  0.5;  (ii)  the  learning  rate  is  0.01
(learning  rates  decay  by  10  times  less  every  60  epochs),
the weight decay is 0.000 1, and the moment is 0.9; (iii) an-
chor ration is [0.5, 1.2] and anchor scales is [2, 4, 8, 16]. 

3.3 Testing model

The method of detecting spotted tongue target and para-
meter description in the inference stage of network mod-
el is described below. 

3.3.1  Preprocessing  the  detected  image　The  network
model of tongue extraction is used to segment the tongue
region on  the  image  datasets.  The  obtained  tongue  im-
age  (black  background)  is  then  put  into  the  spots
recognition model for detection. 

3.3.2  Inference  process  description　(i)  The  detected
tongue image is read first and then approximately 20 000
prediction  boxes  are  generated  through  the  proposal

region generation  network.  (ii)  The  first  border  correc-
tion is performed on 20 000 prediction boxes to get a new
frame after  correction.  (iii)  The edges of  box that  exceed
the image boundary are trimmed to make prediction box
in the range of image. (iv) All prediction boxes are sorted
from high to low by foreground score to get the first 1 000
boxes. (v) Overlapping prediction boxes are then elimin-
ated using a network management system algorithm with
a  threshold  of  0.7.  (vi)  For  the  remaining  prediction  box
in the previous step, classification and second border cor-
rection  is  performed  on  the  first  300  boxes  with  high
scores.  Pixel  masks  calculation  is  performed  on  the  top
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Figure  3    Analysis  of  loss  change  of  multiscale  CNN
using different parameters
A,  classifying  target  candidate  region  loss.  B,  bounding-box
regression loss. C, pixel mask of candidate region loss.

Table 4   Experiment on multiscale CNN using different training parameters

No. Image size (pixels) Learning rate Learning momentum Weight decay Anchor ration Anchor scale

1 800 ×  800 0.01 0.9 0.001 [0.5, 1.2] [4, 8, 16, 32]

2 800 ×  800 0.02 0.9 0.001 [0.5, 1.2] [4, 8, 16, 32]

3 800 ×  800 0.01 0.9 0.001 [0.5, 1.2] [2, 4, 8, 16]
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100 RoI.  The  inference  efficiency  is  accelerated,  and  ac-
curacy is improved. 

3.3.3 Network parameter　Take 1 000 candidate boxes of
the candidate  region  generation  network.  Take  300  can-
didate boxes of the target region calculation network. 

3.3.4  Time  consuming  analysis　The  experiments  are
conducted  using  PyTorch  1.7.0  and  python  3.6.9.  It
spends 195  milliseconds  per  image  using  NVIDIA  Ge-
Force GTX 2080 Ti (11GB) GPU. 

3.3.5  Model  recognition  results　Spots  recognition  tests
are  performed  on  dots,  thorns,  and  petechia.  None  of

spots are tested using the first-generation training model.
The color block is then used to indicate the spots’ location
and region pixel. Figure 4 shows the recognition results.

The test results show that the network model can cor-
rectly recognize  dot,  thorn,  petechia  and  even  dense  ir-
regularly  shaped spots  after  learning.  The model  doesn’t
confuse  the  spots  with  the  similar  tongue  papilla.  Since
too high a threshold will cause false detection and too low
a  threshold  will  cause  missed  detection,  it  is  difficult  for
the traditional image spot detection algorithm to find bal-
ance  between  false  detection  rate  and  missed  detection
rate at the same time.

 
A B C D

E F G H

 
Figure 4   Recognition results of spotted tongue
A, original image with some dotted thorns. B, original image with dense dotted thorns. C, original image with some petechiae. D, ori-
ginal  image with none of  spots.  E,  recognition of  some dotted thorns.  F,  recognition of  dense dotted thorns.  G,  recognition of  some
petechiae. H, recognition of none of spots.
 
 

4 Results

The validation set was randomly selected from the tongue
image datasets, including 500 spotted tongue images and
100 no-spotted tongue images. Additionally, four types of
experimental datasets were constructed according to dot,
thorn, petechiae, and no-spotted tongue. Three methods
were used to detect the spots on the obtained tongue im-
age (black background), namely image spot detection al-
gorithm,  Mask  R-CNN  (“R”  is  the  abbreviation  for  “Re-
gion”) [22] and multiscale CNN (first generation model).

The  recognition  performance  of  multiscale  CNN
model is better than image spot detection algorithm and
Mask  R-CNN.  The  spotted  tongue  recognition  of
multiscale  CNN  model  achieved  an  area  under  curve
(AUC) of 92.40%, an accuracy of 84.30% with a sensitivity
of  88.20%, a  specificity  of  94.19%, and a recall  of  88.20%.
These results are presented in Figure 5. The statistical in-
dicators  of  the  spot  area  pixel  accuracy  (PA)  of  73.00%,
mean pixel accuracy (mPA) of 73.00%, IoU of 60.00% and
mean  intersection  over  union  (mIoU)  of  56.00%  also
present  the  highest  performance  of  the  three  methods
(Table 5).

The  method  in  this  study  is  sensitive  to  detecting
three  types  of  small-scale  targets  such  as  dots,  thorns,
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Figure 5   Quantitative analysis accuracy of the model
A,  analysis  of  receiver  operating  characteristic  (ROC)  curve.
B, analysis of precision recall (PR) curve.
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and  petechiae.  The  comprehensive  correction  rate  of
spots  recognition  is  84.30%.  The  algorithm  has  strong
anti-interference  and  a  high  degree  of  fit  to  the  target
boundary contour. 

5 Discussion

In  recent  years,  with  the  increasing  demand  for  health,
people  pay  more  attention  to  TCM [23-28].  As  a  distinctive
diagnosis and  treatment  method  in  TCM,  tongue  dia-
gnosis  is  not  only  the  main  content  of  observation,  but
also one of  the main tenets  of  clinical  diagnosis  of  TCM.
Traditional  tongue  diagnosis  is  affected  by  a  variety  of
factors,  such  as  the  external  environment,  the  doctor's
knowledge, and the lack of quantitative indicators, and is
subject  to  a  certain  degree  of  uncertainty  and  subjecti-
vity [29, 30]. For a long time, one of the main goals in the ob-
jectification of tongue diagnosis is to solve the vagueness
and uncertainty  surrounding  tongue  diagnosis.  The  de-
velopment of AI technology shows great advantages,  im-
proves  the  clinical  application  value  of  tongue  diagno-
sis [31-35], and makes it tongue diagnosis scientific, specific,
and  objective [36].  Considering  the  shortcomings  of  most
tongue diagnostic instruments, the research and develop-
ment of the AI tongue diagnostic system as a new tongue
diagnostic instrument can satisfy the needs of users to de-
tect tongue images on mobile phones. The open applica-
tion  scenario  is  not  easily  disturbed  by  the  external
environment,  and  the  collected  information  is  richer.
This is more in line with the collection characteristics of a
tongue image, which is conducive to the improvement of
the universality of tongue image feature recognition, so as
to  meet  the  objective  research  of  tongue  image  under
various conditions [37, 38].

This study  established  a  model  of  spotted  tongue  re-
cognition and  extraction,  multiscale  CNN,  which  in-
cluded multiscale feature map generation, region propos-
al searching, and target region recognition. Compared to
the simple model, this model has several advantages such
as multiscale  RoI  recognition,  accurate  boundary  con-
tour  extraction,  and  a  strong  anti-interference  ability.
Firstly,  this  multiscale  high-abstraction  feature  map  is
more robust in the face of different sizes of detection tar-
gets,  especially  in  terms  of  not  missing  small  targets.
Secondly, the target candidate area is pooled into a smaller

candidate area feature map through the local area average
pooling  algorithm  RoI  ExactPooling,  which  reduces  the
pixel deviation between the feature map and the original
image  candidate  area  without  increasing  the  amount  of
calculation. Here, the pixel accuracy of the extracted area
is also higher. Finally, the network is trained by means of
the  total  loss  of  the  proposal  region  generation  network
and the total  loss  of  the target  candidate region recogni-
tion  network.  Through  the  above  several  innovative
means,  the  accuracy  of  the  classification  results  of  the
tongue-piercing tongue and the extraction of edge pixels
are improved. 

6 Conclusion

In  summary,  the  findings  show  that  the  multiscale  CNN
model  has  achieved  ideal  results  in  the  classification  of
dots,  thorns  and petechia  of  different  sizes  and the pixel
segmentation accuracy of the target regions. Soon, many
spotted  tongue  datasets  will  be  used  iterative  training.
Multiscale CNN  model  will  keep  learning  and  spots  re-
cognition accuracy  can  be  improved  to  adapt  to  the  re-
search of AI tongue diagnosis in TCM. 
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基于多尺度卷积神经网络的舌象点刺识别模型建立与验证
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【摘要】目的  舌象中点刺所生的部位、颜色、分布的疏密可以推测邪热所在脏腑及其轻重。本研究聚焦于人工

智能的图像分析方法研究中医点刺舌识别。方法  基于图像深度学习和实例分割原理，设计了舌象点刺识别与

提取模型。该模型包括多尺度特征图生成模块、候选区域搜索模块和目标区域识别模块。首先使用深度卷积网

络分别建立多尺度低、高抽象度的特征图谱，再在特征图上进行目标候选框生成算法和优选策略以精选出高质

量目标候选区域，最后使用分类网络对目标区域分类、计算目标区域像素，最终得到舌象表面点刺的区域分割。

在无辅助光源条件下手机拍摄的不同规格舌象，使用该方法进行实验。结果  实验结果表明，该点刺识别受试者

工作特征曲线下的面积 （AUC）值为 92.40%，精确度为 84.30%，灵敏度为 88.20%，特异度为 94.19%，召回率为

88.20%，区域像素准确率指标像素精度（PA）为 73.00%，均像素精度（mPA）为 73.00%，交并比（IoU）为 60.00%，

均交并比（mIoU）为 56.00%。结论  本研究结果表明该模型适用于中医舌诊系统应用。基于多尺度卷积神经网

络的点刺舌识别，有助于提高点刺分类和点刺区域像素的精准提取，为中医智能舌诊提供一种切实可行的方法。

【关键词】点刺识别提取；舌象特征；实例分割；卷积神经网络；中医舌诊系统；人工智能
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