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Objective  For computer-aided Chinese medical  diagnosis and aiming at  the problem of  in-
sufficient segmentation, a novel multi-level method based on the multi-scale fusion residual
neural network (MF2ResU-Net) model is proposed.
Methods  To  obtain  refined  features  of  retinal  blood  vessels,  three  cascade  connected  U-
Net networks are employed. To deal with the problem of difference between the parts of en-
coder and decoder, in MF2ResU-Net, shortcut connections are used to combine the encoder
and decoder layers in the blocks. To refine the feature of segmentation, atrous spatial pyram-
id pooling (ASPP) is embedded to achieve multi-scale features for the final segmentation net-
works.
Results  The MF2ResU-Net was superior to the existing methods on the criteria of sensitivity
(Sen), specificity (Spe), accuracy (ACC), and area under curve (AUC), the values of which are
0.8013 and 0.8102, 0.9842 and 0.9809, 0.9700 and 0.9776, and 0.9797 and 0.9837, respectively
for  DRIVE  and  CHASE  DB1.  The  results  of  experiments  demonstrated  the  effectiveness  and
robustness of the model in the segmentation of complex curvature and small blood vessels.
Conclusion  Based  on  residual  connections  and  multi-feature  fusion,  the  proposed  method
can obtain  accurate  segmentation  of  retinal  blood  vessels  by  refining  the  segmentation  fea-
tures, which can provide another diagnosis method for computer-aided Chinese medical dia-
gnosis.

 
 1 Introduction

Automatic segmentation of retinal blood vessels is an es-

sential part of computer-aided diagnosis for diabetic ret-
inopathy  and  hypertensive  retinopathy [1].  Retinal  vessel
examination  is  a  non-invasive  diagnosis  method,  as  a
part  of  the  Chinese  medicine  theory,  which  is  a  primary
and  commonly  used  examination  method  for  diabetic
complications and retinal diseases. With the development

of computer  vision,  retinal  vessel  examination  has  be-
come an important diagnosis method for many diseases.
Recent research has found that  the retinal  vessel  density
of  patients  with  prolactin  inhibitory  hormone  (PIH)  is
higher than that of healthy pregnant women [2]. The retin-
al vessels of patients with Alzheimer’s disease (AD) in the
early stage show an obviously pathological change [3].

At  present,  the  main  method  for  detection  of  retinal
abnormalities  is  manual  examination  in  practice.

406   CUI Zhenchao, et al. / Digital Chinese Medicine 5 (2022) 406-418

Contents lists available at ScienceDirect

Digital Chinese Medicine

j ou rna l  homepage:  h t tp : / /www.kea ipub l i sh ing .com/dcmed

*Corresponding author: CUI Zhenchao, Doctor, E-mail: cuizhenchao@gmail.com.

Peer review under the responsibility of Hunan University of Chinese Medicine.

DOI: 10.1016/j.dcmed.2022.12.008

Citation: CUI ZC, SONG SJ, QI J. MF2ResU-Net: a multi-feature fusion deep learning architecture for retinal blood vessel segmentation. Digital Chinese Medicine, 2022, 5(4):

406-418.

Copyright © 2022 The Authors. Production and hosting by Elsevier B.V. This is an open access article under the Creative Commons Attribution License, which permits un-
restricted use and redistribution provided that the original author and source are credited.



However,  the  manual  examination  method  has  several
disadvantages, such as instability in batch processes and
subjectivity. Thus, computer-aided systems have became
important  for  retinal  disease  diagnosis.  In  this  diagnosis
system,  automatic  segmentation  of  retinal  blood  vessels
is an essential  part,  and the segmentation affects  the ac-
curacy of  examination.  Thus,  the  automatic  segmenta-
tion  method  of  retinal  blood  vessels  plays  a  cornerstone
role in computer-aided diagnosis [4, 5].

The  existing  methods  for  retinal  vessel  segmentation
can be classified into machine learning- and deep learn-
ing-based  methods.  The  fixed  feature  detection  method
in machine learning has been used for retinal blood ves-
sel segmentation. HASHEMZADEH et al. [6] proposed the
UNEt TRansformer (UNETR) model for extracting the ret-
inal blood vessels employing a set of effective image fea-
tures and a combination of supervised and unsupervised
machine  learning  techniques.  To  solve  the  problem  of
high  intra-class  variance  of  image  features  calculated
from various vessel pixels, LAI et al. [7] proposed the auto-
matic retinal image analysis (ARIA) methodology, an ap-
plied  machine-learning  technology,  to  optimize  retinal
information.  BAHADAR  et  al. [8] proposed  a  method  for
extracting retinal blood vessels based on feature classific-
ation.  The  blood  vessels  were  extracted  from  the  color
fundus  image  by  applying  preprocessing  methods  and
segmentation  techniques  using  matched  filters  and  a
modified local  entropy  thresholding  operation.  To  re-
duce the  time  required  by  ophthalmologists  for  examin-
ing the retinal  images,  WANG et  al. [9] proposed a super-
vised method for segmenting blood vessels in retinal im-
ages based on the extreme learning machine (ELM) clas-
sifier.  In  these  machine  learning  methods,  the  features
used  for  classification  can  have  a  significant  impact  on
the prediction  result.  To  achieve  higher  efficiency,  re-
searchers have proposed high requirements for  an auto-
matic and effective feature extractor.

Since their development in computer vision, the deep
learning-based  methods  have  become  the  mainstream
for  computer  vision  tasks,  including  retinal  blood  vessel
segmentation.  LISKOWSKI  et  al. [10] first used  a  convolu-
tional  neural  network  (CNN)  to  segment  retinal  blood
vessels. OLIVERIRA et al. [11] proposed a combination of a
steady-state  wavelet  transform  and  a  multi-scale  fully
convolutional  neural  network  (FCNN)  for  blood  vessel
segmentation.  WU  et  al. [12] proposed  a  novel  scale  and
context sensitive network (SCS-Net) for retinal vessel seg-
mentation, which dynamically adjusts the receptive fields
and uses a self-adaptive feature fusion module. To obtain
global context, NI et al. [13] proposed the global context at-
tention (GCA) module and the squeeze excitation pyram-
id pool  (SEPP) module for  segmentation of  retinal  blood
vessels.

The  typical  U-shaped  network,  U-Net,  an  encoder-

decoder  model  with  skip  connections,  was  designed  for
medical  image  segmentation [14].  Many  medical  image
segmentation  methods  were  proposed  based  on  the
FCNN  with  U-shaped  structure [15, 16].  JIN  et  al. [5] pro-
posed an automatic segmentation model, DU-Net, to ob-
tain denser feature information and reduce the character-
istics  of  small  blood  vessels.  LAIBACHER  et  al. [17] pro-
posed  the  M2U-Net,  which  has  a  new  encoder–decoder
architecture  inspired  by  the  U-Net.  GU  et  al. [18] intro-
duced  a  context  encoder  between  the  feature  encoder
and  the  decoder  module.  This  context  encoder  uses  a
dense  atrous  convolutional  block  and  multiple  kernel
pooling to extract more high-level features. Some studies
have tried to address this problem by using atrous convo-
lutional layers [19],  self-attention mechanisms [20], and im-
age  pyramids [21].  However,  although  the  deep  learning-
based  methods  have  achieved  excellent  performance  in
the field of medical image segmentation, they still cannot
fully meet the strict requirements of medical applications
for tiny  vessel  segmentation.  Because  of  the  subtle  con-
trast  between  the  target  vessels  and  the  background  of
the images,  the features  of  small  and tiny vessels  cannot
be detected by the existing methods. Therefore, the exist-
ing  methods  have  a  low  accuracy  rate  for  small  vessels
with weak pixel values. Image segmentation is still a chal-
lenging task in medical image analysis.

To  obtain  precise  segmentation  of  retinal  vessels,  a
novel  model,  the  multi-module  fusion  residual  neural
network (MF2ResU-Net) model, and a novel loss function
are  proposed  in  this  paper.  In  the  MF2ResU-Net,  three
cascade  connected  U-Nets  are  used  as  the  backbone.
Three shortcuts are used for the blocks of U-Nets to deal
with the problem of over-fitting. In each block of U-Nets,
to  reduce  the  semantic  gap,  residual  paths  are  used  to
connect the  same  layers  of  the  encoder  and  decoder  in-
stead of shortcuts. To refine the features of retinal vessels
and obtain multi-scale features, an atrous space pyramid
pooling  (ASPP)  module  is  employed  in  our  model.  For
training  our  model  and  solve  the  problem  of  imbalance
between  the  foreground  and  background,  we  propose  a
novel loss function based on the dice loss and cross func-
tions, which  could  reduce  the  effects  of  sample  imbal-
ance during training.

The  contributions  of  our  work  can  be  elaborated  as
follows:

(I)  To  refine  the  representation  features  of  retinal
small  vessels,  a  novel  network,  MF2ResU-Net, is  pro-
posed, which can detect the features of  blurry small  ves-
sels.

(II) A novel loss function based on the dice loss func-
tion  and  cross  entropy,  added  to  a  cost-sensitive  matrix,
is  introduced  to  achieve  a  more  balanced  segmentation
between the vessel and non-vessel pixels.
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 2 Methods

Given  the  difficulty  of  feature  detection  for  small  blurry
vessels, it  is  challenging to  obtain satisfactory segmenta-
tion  results  using  conventional  methods.  In  this  paper,
we  propose  a  new  model,  MF2ResU-Net,  to  refine  small
vessels and obtain the segmentation of retinal vessels.

 2.1 Fusing residual path U-Net

In the MF2ResU-Net, we use three cascade-connected U-
Nets  as  the backbone network of  the module.  U-Net  is  a
classic  encoder-decoder  structure  network.  A  distinctive
contribution of the U-Net architecture is the introduction
of   shortcut   connections   between   the   corresponding
layers before the max-pooling and after the deconvolution
operations.  As  shown  in Figure  1A,  the  features  coming
from the encoder are computed in the earlier layers of the
network.  Conversely,  the  decoder  features  go  through
convolution,  down-sampling,  and  up-sampling,  and  are
supposed  to  be  of  much  higher  level  because  they  are
computed  at  the  very  deep  layers  of  the  network.  Thus,
there are semantic differences between the same layers of
the encoder and decoder, which could affect the results of
segmentation.

To  remedy  the  semantic  differences  between  the
same  layers  of  the  encoder  and  decoder,  SZEGEDY
et  al. [22] used  two  3 ×    3  convolutional  layers  after  each

pooling  layer  and  before  the  transposed  convolutional
layer. These series of two 3 ×    3 convolutional operations
actually resemble a 5 ×  5 convolutional operation. There-
fore, according to the approach of the Inception network,
the simplest way to augment the U-Net with a multi-res-
olution analysis capability is to incorporate 3 ×  3 and 7 ×
 7 convolution operations in parallel to the 5 ×  5 convolu-
tion operation (Figure 1B). Therefore,  replacing the con-
volutional layers with Inception-like blocks should facilit-
ate the U-Net architecture to reconcile the features learnt
from the  image  at  different  scales.  Another  possible  op-
tion is to use stride convolutions. However, in our experi-
ments, although  the  performance  improved,  the  intro-
duction of  additional  convolutional  layers  in  parallel  in-
creased  the  memory  requirement  exaggeratedly.  We
factorized  the  bigger,  more  demanding  5 ×  5  and  7 ×  7
convolutional  layers  using  a  sequence  of  smaller  and
lightweight  3 ×  3  convolutional  blocks  (Figure  1C).  Our
fusing residual path was a cascade-connected structure of
blocks,  and  each  block  consisted  of  convolutional  layers
with  3 ×  3  filters  and  a  1 ×  1  filter.  This  modification
greatly  reduced  the  memory  requirement.  We  gradually
increased the filters  in  the layers  to  prevent  the memory
requirement  of  the  earlier  layers  from  exceedingly
propagating  to  the  deeper  part  of  the  network.  We  also
added  a  residual  connection  because  of  their  efficacy  in
biomedical  image segmentation along with a  1 ×   1  con-
volutional layer, which may allow us to capture some ad-
ditional  retina  spatial  information [23].  We  named  this
structure as Res-path. According to the different number
of layers, we set different Res-path lengths.

To refine the feature maps of retinal vessels, we used a
fusing  U-Net,  named  ResU-Net,  for  the  blocks  of  our
model, which is shown in (Figure 2). To avoid losing fea-
tures  in  detection,  we  used  a  light  U-Net  structure  with
two  convolutional  layers  and  two  max-pooling  layers  as
down-sampling  in  the  encoder,  and  two  convolutional
layers  and  two  deconvolution  layers  as  up-sampling  in
the  decoder.  The  parameters  of  the  fusing  residual  path
U-Net  are  presented  in Table  1.  Moreover,  a  great
challenge  in  vessel  segmentation  is  the  detection  of
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Figure 1   Res-path structure diagram
A, residual connection between decoder and encoder. B, paral-
lel connection. C, fusion connection.
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Figure 2   ResU-Net block module
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vessels  with  various  shapes  and  scales.  We  detected  the
comprehensive and detailed feature extraction in fundus
retinal vascular images by using a parallel model (Figure
3).  Between  the  encoder  and  decoder,  we  employed  an
ASPP module, which can obtain the multi-scale local fea-
tures of  retinal  vessels.  According  to  the  tubular  charac-
teristics of  various  sizes  in  vessels,  four  atrous  convolu-
tions  with  a  3 ×  3  convolution  size  were  used  for  multi-
scale  feature  extraction.  The  ASPP  was  inspired  by  the
spatial  pyramid  pooling  method  of  DeepLab  v2 [19],  but
because  that network   uses   a   too   large   dilation  rate,   it

extracts   invalid features from  blood  vessels.  An  excess-
ively large dilation rate is  not suitable for datasets of  ret-
inas, and thus the dilation convolution with a void rate of
24  was  deleted  in  the  ASPP.  The  dilation  rates  in  our
model were defined as {2, 4, 8, 16}. To accelerate comput-
ing,  a  1 ×  1  convolution  was  employed  after  each  atrous
convolution.  In  the  final  feature  map,  the  feature  image
was up-sampled using the bilinear interpolation method.
The resolution of each feature map after atrous convolu-
tion was expanded by bilinear interpolation, which made
the size of each layer feature map consistent. Finally, the
target  feature  map  was  formed  by  four  feature  maps
through  the  addition  of  the  corresponding  pixels.  The
parameters of the ASPP are listed in Table 1.

 2.2 MF2ResU-Net for retinal vessel segmentation

The aim of  this  study was to build deep learning models
to  segment  retinal  vessels  in  fundus  images. Figure  4
shows  a  diagram  of  the  MF2ResU-Net  model  for  retinal
vessel segmentation. We cascaded three ResU-Net blocks
for  the  feature  maps  to  form  MF2ResU-Net.  To  remedy
the sensitivity  problem of  the networks for  training data,
residual  links  were  employed  in  our  model.  To  improve
the  generalization  of  the  proposed  method,  the  original
images  were  preprocessed  and  randomly  cropped  into
small patches  to  establish  training  and  validation  data-
sets.  The  size  of  the  patches  for  training  and  evaluation
was  empirically  selected  as  48 ×  48  (pixel ×    pixel).  After
segmentation  by  the  MF2ResU-Net,  a  complete  vessel
probability  map  could  be  obtained  by  reordering  the
patches. The connection result of each residual block was
represented by Formula (1).

Wm = F (am,bm)+H (am) (1)

am+1 = σ (Wm) (2)

Where am represents  the  ResU-Net  input  and bm repres-
ents the ResU-Net output. F (am, bm) stands for the resid-
ual function. H (am) denotes the map function of features.
The  value  of F (am)  is  equivalent  to bm.  In  Formula  (2),
σ (Wm)  represents  the  activation  function.  The  residual
connection result was used as the input of the next mod-
ule  through  the  ReLU  activation  function.  Finally,  we
obtained  the  output  result  of  each  residual  connection
Wm.

Table 1   Parameters of the ResU-Net block

ResU-Net Layer (filter size) Filter

Block1

Conv2D (3  ×  3) 32

MaxPooling (2  ×  2) 64

Conv2D (3  ×  3) 64

Conv2D (3  ×  3) 64

MaxPooling (2  ×  2) 128

ASPP 128

Conv2D (3  ×  3) 64

Conv2D (3  ×  3) 64

Upsampling (2  ×  2) 32

Conv2D (3  ×  3) 32

Conv2D (3  ×  3) 32

Conv2D (3  ×  3) 32

Res-path1

Conv2D (1  ×  1) 32

Conv2D (3  ×  3) 32

Conv2D (1  ×  1) 32

Conv2D (3  ×  3) 32

Conv2D (1  ×  1) 32

Conv2D (3  ×  3) 32

Conv2D (1  ×  1) 32

Res-path2

Conv2D (3  ×  3) 64

Conv2D (1  ×  1) 64

Conv2D (3  ×  3) 64

Conv2D (1  ×  1) 64

ASPP

Conv2D (3  ×  3) Rate: 2 128

Conv2D (1  ×  1) 128

Conv2D (3  ×  3) Rate: 4 128

Conv2D (1  ×  1) 128

Conv2D (3  ×  3) Rate: 8 128

Conv2D (1  ×  1) 128

Conv2D (3  ×  3) Rate: 16 128

Conv2D (1  ×  1) 128
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Figure 3   Atrous spatial pyramid pooling
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The  segmentation  output  was  obtained  by  the  last
block  of  the  fusion  ResU-Net  and  two  convolutions,
which  used  a  1 ×  1  (pixel ×  pixel)  convolutional  kernel
and max pooling operation. The ReLU and sigmoid func-
tions were  used  as  activation  functions  in  the  convolu-
tions.

 2.3 Loss function design

From  the  statistics  of  typical  retinal  blood  vessels  in  the
dataset, we  found  that  the  ratio  of  pixels  in  the  fore-
ground to those in the background was almost 1 : 12 (the
number of pixels in the foreground was 453 800, whereas
that in the background was 6 599 200), which shows that
there was an imbalance for the segmentation task. Thus,
several  existing  loss  functions  are  not  suitable  for  our
task. To deal with the imbalance problem, we proposed a
novel  loss  function  based  on  an  improved  binary  cross
entropy loss function and a dice loss function.

For  binary  segmentation  problems,  the  binary  cross
entropy loss function could be defined as in Formula (3).

Loss′ = − 1
N

(
N∑

k=1

yk logxk−
N∑

k=1

(1− yk) log(1− xk)

)
(3)

LCE

Where N is the number of patch pixels, xk represents the
foreground predicted probability of the input pixel k, and
yk is  the  true  label  of  pixel k,  which  is  either  1  (fore-
ground) or 0 (background) in this task. For the imbalance
problem in  our  task,  we  improved  the  binary  cross  en-
tropy  loss  function.  As  presented  in  Formula  (4),  we
defined a novel loss function .

LCE =−
1
N

∑
N
k=1

[
yk 1− yk

][ log xk

log(1− xk)

][
1 λxk

0 1

]
(4)

xk xkWhere  is  an  indicator  for  wrong  prediction  to ,

xk =

{
1, xk ⩽ 0.5
0, xk > 0.5

LCE

. λ is the penalty parameter for  predict-

ing the  blood  vessel,  which  is  a  positive  real  number.  In
the loss function of , we could set a large value of λ to
enlarge the  loss  of  the  wrong  prediction  in  the  fore-
ground. Because  of  the  ratio  of  foreground  to  back-
ground, λ was set to 12 in this study.

To deal with the imbalance problem and obtain a per-
fect criterion on intersection of union, the dice loss func-
tion [24] was  proposed  in  the  segmentation  task,  which
could be expressed as in Formula (5).

L′dice = 1−2
xk∩ yk

xk+ yk
(5)

xk

yk

|xk∩ yk|

Where      represents   the   fundus   blood   vessel   region
segmented  by  the  algorithm,  and  denotes  the  fundus
blood  vessel  region  manually  segmented  by  the  expert.

 represents the same area of the retinal blood ves-
sel region segmented by the proposed method and an ex-
pert.  To  remedy  the  numerical  problems,  we  improved
the  dice  loss  by  introducing  a  Laplace  smooth  factor, φ,
and the improved dice loss is expressed in Formula (6).

Ldice = 1−2

N∑
i=1

xkyk+φ

N∑
i=1

x2
k +

N∑
i=1

y2
k +φ

(6)

To  deal  with  the  vanishing  gradient  problem  of  dice
loss and  combine  the  advantages  of  the  two  loss  func-
tions,  a  synthetic  loss  function  for  the  training  of  the
MF2ResU-Net model was proposed in this study.

Loss = αLCE + (1−α)Ldice (7)

LCE Ldice

Where α is  a  parameter  that  controls  the  contribution  of
the  and  loss functions.
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Figure 4   General map of the MF2ResU-Net structure
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 3 Results and discussion

We tested our model, MF2ResU-Net, by comparing it with
several conventional  retinal  vessel  segmentation  meth-
ods  on  the  public  datasets  DRIVE  and  CHASE  DB1.  The
segmentation  performance  of  the  proposed  method  on
the fundus image can be assessed by comparing the seg-
mentation testing results with the image label.

 3.1 Datasets and computational platform

The public datasets DRIVE and CHASE DB1 were used to
test  our  model.  DRIVE contains 40 colored retinal  vessel
images, which were obtained from a diabetic retinopathy
(DR) screening program in the Netherlands [25]. The data-
set  was  randomly  divided  into  two  groups,  the  test  and
training  sets,  and  each  group  contained  20  images.  The
size of each image was 565 ×  584. The CHASE DB1 dataset
contained 28 images of 14 children, corresponding to two
images  per  patient,  from  the  Child  Heart  and  Health
Study in England [25]. The size of the image in CHASE DB1
was  999 ×  960.  In  our  experiment,  14  images  were  used
for training,  and  the  other  14  images  were  used  for  test-
ing. Each picture in the CHASE DB1 was segmented by a
professional  physician  to  obtain  a  manual  result  image,
but there was no corresponding mask, and we needed to
set  it  manually.  The  result  of  manually  setting  the  mask
for  CHASE  DB1  is  shown  in Figure  5.  These  two  fundus
retinal  blood  vessel  datasets  are  commonly  used  as  test
datasets for retinal blood vessel segmentation algorithms.

 
A B C

 
Figure 5   Typical image in CHASE DB1
A,  original  retinal  vessel  image.  B,  ground-truth.  C,  manual
mask.
 

The  platform  of  the  experiment  for  MF2ResU-Net
training was a 64-bit Win 10 system with an Intel Core i5-
4160k,  3.60  GHz  CPU  (Intel)  and  a  6  GB  NVIDA1660Ti
GPU . The structure of the network was implemented un-
der the open-source deep learning library TensorFlow.

 3.2 Data pre-processing

The  images  of  the  two  databases  were  all  colored  RGB
images, and the original retinal blood vessel images had a
low  contrast.  The  features  of  retinal  blood  vessels  were
not  obvious.  To  improve  the  performance  of  the
MF2ResU-Net model,  a  technique  that  enhances  the  im-
age  contrast  was  used  to  make  the  retinal  blood  vessel
features  more  obvious.  As  the  gray  scale  images  showed
better  contrast  than  the  RGB  images [26],  we  used  gray

scale  images  as  the  input  of  models.  To  strengthen  the
contrast ratio between vessels and background in retinal
images, we  applied  three  strategies  for  image  prepro-
cessing, which  were  normalization,  contrast  limited  ad-
aptive  histogram  equalization  (CLAHE) [27],  and  gamma
correction. Figure  6 shows  preprocessed  images  of  one
typical retinal image using these three strategies. The pre-
processed  retinal  image  had  a  higher  contrast  between
the blood  vessel  outline  and  the  background  and  re-
duced noise.

 
A B

C D

 
Figure 6   Retina image preprocessing results
A,  original  image.  B,  normalized  image.  C,  image  after  CLAHE
operation. D, image after Gamma correction.
 

Data augmentation is widely applied in convolutional
neural networks  because  of  its  high  efficiency  and  oper-
ability.  Considering  that  DRIVE  and  CHASE  DB1  are
small datasets, the model will be prone to overfitting and
poor classification performance. Therefore, it  was neces-
sary  to  augment  the  dataset  for  achieving  better  results.
Four  image  processing  steps  were  used  for  augmenting
the dataset: rotating, mirroring, shifting, and cropping. To
reduce the overfitting problem, our models  were trained
on  small  patches,  which  were  randomly  extracted  from
the images. Further, to reduce the calculation complexity
and  ensure  the  surrounding  local  features,  small  size
blocks  of  48 ×  48 were randomly extracted from the pre-
processed  images  and  used  to  train  our  model.  In  this
study, 190 000 and 200 000 blocks were randomly extrac-
ted from  the  DRIVE  and  CHASE  DB1  datasets,  respect-
ively; 90%  of  blocks  were  used  for  training,  and  the  re-
maining  blocks  were  used  for  testing.  Several  randomly
sampled patches and the corresponding labels for the ex-
periments  are  presented  in Figure  7.  The  corresponding
labels  of  the  patches  were  decided  based  on  the  ground
truth images.

 3.3 Performance evaluation criteria

The  classification  result  of  every  pixel  could  be  one  of
four  types  with  the  following  entries.  True  positive  (TP)
indicated  a  vessel  pixel  classified  correctly  as  a  vessel
pixel.  False  positive  (FP)  indicated  a  non-vessel  pixel
classified  wrongly  as  a  vessel  pixel.  True  negative  (TN)

CUI Zhenchao, et al. / Digital Chinese Medicine 5 (2022) 406-418 MF2ResU-Net    411



indicated a non-vessel pixel classified correctly as a non-
vessel  pixel.  False  negative  (FN)  indicated  a  vessel  pixel
classified wrongly as a non-vessel pixel.

To evaluate  the  segmentation  of  the  proposed  al-
gorithm  quantitatively,  four  evaluation  indicators  were
used, which  were  accuracy  (ACC),  sensitivity  (Sen),  spe-
cificity (Spe), and F1-Score [27]. In this model, positive re-
ferred to  blood  vessels  and  negative  referred  to  back-
ground.  The ACC, Sen,  Spe,  and F1-Score are defined as
follows.

ACC =
TP+TN

TP+TN +FP+FN
(8)

Sen =
TP

TP+TN
(9)

Spe =
TN

TN +FP
(10)

Rcall =
TP

TP+FN
(11)

Pre =
TP

TP+FP
(12)

F1-Score =
2×Pre×Rcall

Pre+Rcall
(13)

Where ACC is the ratio of the number of correctly detec-
ted blood vessel and background pixels to the total num-
ber of image pixels; Sen is the ratio of the number of cor-
rectly  detected  retinal  blood  vessel  pixels  to  the  total
number of blood vessel pixels; Spe is the ratio of the num-
ber  of  correctly  detected  non-vessel  pixels  to  the  total
number  of  non-vessel  pixels;  and  F1-Score  is  a  measure
of the  similarity  between  the  model  and  the  expert  seg-
mentation results.

The  AUC  value  represents  the  area  under  the  ROC
curve.  The  ROC  curve  is  an  important  method  for

measuring the comprehensive performance of  image se-
mantic  segmentation.  Its  value  ranges  from  0  to  1.  The
condition  AUC =  1  indicates  a  perfect  classifier;  0.5 <
AUC <  1  means  that  better  than  random  classifiers;  and
0 <  AUC <  0.5 means that worse than random classifiers.

 3.4 Experimental results

We  tested  the  proposed  method  by  comparing  it  with
several existing retinal vessel segmentation methods. The
experiment was  dived  into  two  parts:  ablation  experi-
ments and comparative experiments.

 3.4.1 Ablation  and  basic  network  comparison   experi-
ments　Figure  8 shows  the  main  processing  of  ablation
experiments. After  image  preprocessing,  one  retinal  im-
age could be segmented in  many image blocks  with size
of  48 ×  48. By  using  the  vessel  detection  model,  we  ob-
tained the segmentation result composed of the segmen-
ted  image.  As  the  network  deepened,  the  segmentation
results were better. From the detail map, in the third row
and the fourth column, it can be observed that the three-
fusion  network  had  the  best  detail  segmentation  and
complex curvature segmentation functions.

Table  2 and 3 present the  results  of  ablation  experi-
ments.  In  the  ablation  experiments,  we  compared  the
proposed  model  with  U-Net,  single  residual  U-Net
(Block1), double residual U-Net (Block2), and four resid-
ual U-Net  (Block4)  on the DRIVE and CHASE DB1 data-
sets.  As  presented  in Table  2,  on  the  DRIVE  dataset,  the
Sen,  F1,  AUC,  and  ACC  of  MF2ResU-Net  were 0.801 3,
0.822 3, 0.979 7,  and 0.970 0,  respectively,  which were the
highest  values  among  the  compared  methods.  This
means  that  the  results  of  MF2ResU-Net  on  DRIVE  were
better  than  those  of  other  methods.  As  listed  in Table  3,
the Sen, F1, AUC, and ACC of MF2ResU-Net were 0.810 2,
0.814 2, 0.983 7,  and 0.977 6,  respectively,  on  the  CHASE
DB1 dataset. These were the highest values among all res-
ults,  which  means  that  the  generalization  ability  of
MF2ResU-Net was  better  than  that  of  other  block  meth-
ods. The analysis of the experimental results of Block4, as
presented in the discounted indicators in Figure 8, Table 3
and 4, indicates  that  Block4  achieved  higher  segmenta-
tion indicators than those of Block1 and Block2, but they
were slightly lower than or the same as those of MF2ResU-
Net, and  the  training  time  of  Block4  was  longer.  There-
fore,  the  three-module  residual  network,  MF2ResU-Net,
was superior  to  the  other  four  networks  in  terms  of  seg-
mentation statistics.

We compared our proposed model with two state-of-
the-art networks.  One  was  the  customized  implementa-
tion of U-Net, which we introduced above. The other was
DeepLab  v2.  DeepLab  v2  is  an  advanced  segmentation
network, which  combines  deep  convolutional  nets,  at-
rous convolution,  and  fully  connected  conditional  ran-
dom fields (CRFs). In MF2ResU-Net, we combined atrous

 

A B

 
Figure 7   Local block information map
A,  patches  from  the  preprocessed  image.  B,  patches  from  the
corresponding  ground  truth.  Typical  48 ×    48  patches  selected
for model training.
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convolution and  U-Net.  In  order  to  highlight  the  excel-
lence of our model, we compared the three models, Dee-
pLab  v2,  U-Net,  and  MF2ResU-Net  based  on  the  DRIVE
and CHASE DB1 datasets. We evaluated the model using
the test data. Sen, Spe, ACC, F1, and AUC were compared
and the results  are  presented in Table  4 and 5.  It  can be
observed from the tables that the MF2ResU-Net achieves
the  highest  values  for  most  of  the  metrics.  The  global
accuracy for DeepLab v2, U-Net, and MF2ResU-Net were
0.963 6, 0.952 7, and 0.970 0 on DRIVE, and 0.962 4, 0.954 9,
and 0.977 6 on CHASE, respectively. Moreover, we evalu-
ated the models using ROC curves (Figure 9).  The closer
the  ROC  curve  to  the  top-left  border  in  the  ROC

coordinates,  the more accurate is  a  model.  These results
showed  that  the  curves  of  the  MF2ResU-Net  were  the
most top-left among the three models, whereas the U-Net
curves  were  the  lowest  of  the  three.  The  MF2ResU-Net
also had the largest area under the ROC curve (AUC).

 3.4.2  Comparison  against  existing  methods　To  test  our
model  for  retinal  vessel  segmentation,  we  compared  it
with several state of  art  models.  In Figure 10,  we present
the results and details of several typical retinal vessel im-
ages using several methods. The first column in Figure 10
shows the original  images from DRIVE and CHASE DB1.
The second column is the ground-truth of the segmenta-
tion.  The  third,  fourth,  and  fifth  columns,  respectively,
present  the  results  of  U-Net,  DU-Net [5],  and  MF2ResU-
Net.  The  second,  fourth,  and  sixth  lines,  respectively,

 

U-Net

Block1

M2FResU-Net

Block4

A B C D E

 
Figure 8   Comparison diagram of detail segmentation of three network structures
A, original image. B, original image samples. C, snapshots of the proposed MF2ResU-Net, Block1, Block2, and U-Net. D, samples of net-
work segmentation results. E, re-composition of segmentation results.

Table  2   Statistical  results  of  different  modules  on  the
DRIVE dataset

Model
DRIVE

Sen F1-Score Spe AUC ACC

Block1 0.749 1 0.806 6 0.984 2 0.976 8 0.954 2

Block2 0.755 9 0.809 3 0.984 3 0.978 5 0.959 1

MF2ResU-Net 0.801 3 0.822 3 0.984 2 0.979 7 0.970 0

Block4 0.774 1 0.815 9 0.982 0 0.978 2 0.964 7

Table  3   Statistical  results  of  different  modules  on  the
CHASE DB1 dataset

Model
CHASE DB1

Sen F1-Score Spe AUC ACC

Block1 0.753 8 0.784 8 0.981 4 0.974 7 0.958 5

Block2 0.773 6 0.795 8 0.981 0 0.979 6 0.960 2

MF2ResU-Net 0.810 2 0.814 2 0.980 9 0.983 7 0.977 6

Block4 0.794 2 0.811 9 0.982 0 0.982 4 0.972 2

Table  4   Performance  of  the  three  models  tested  on
DRIVE

Model
DRIVE

Sen F1-Score Spe AUC ACC

U-Net 0.737 6 0.798 7 0.984 0 0.964 0 0.952 7

DeepLab v2 0.763 1 0.808 3 0.983 7 0.974 9 0.963 6

MF2ResU-net 0.801 3 0.822 3 0.984 2 0.979 7 0.970 0

Table  5   Performance  of  the  three  models  tested  on
CHASE DB1

Model
CHASE DB1

Sen F1-Score Spe AUC ACC

U-Net 0.702 0 0.757 4 0.983 1 0.970 9 0.954 9

DeepLab v2 0.761 9 0.800 1 0.984 8 0.980 1 0.962 4

MF2ResU-net 0.810 2 0.814 2 0.980 9 0.983 7 0.977 6
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present  enlarged versions of  the red and green blocks in
the corresponding original images obtained using U-Net,
DU-Net, and MF2ResU-Net.

As  can  be  observed  from  the  entire  images  in Figure
10, the results of MF2ResU-Net were closer to the ground-
truth than those of other methods, which means that our
model is superior. From the enlarged version of segment
blocks, MF2ResU-Net was able to detect small vessels that
were disturbed by the complex background, but the small
vessels  in  the  results  of  the  compared  methods  were
blurred  or  disappeared.  MF2ResU-Net  also  produced  a
more  obvious  expression  of  vascular  features,  and  could
segment  subtle  blood  vessels  that  were  not  obvious.
Figure 11 shows the segmentation details of the two data-
sets. In Figure 11, the first line shows local details and the
third line shows an overlap area of main blood vessels ad-
jacent to  each  other.  The  network  must  accurately  seg-
ment this blood vessel, but in LadderNet [28],  because the
blood vessel was unclear and there was a lot of noise in-
terference, the blood vessel was broken when it was seg-
mented. Obviously,  our  method  had  a  better  segmenta-
tion effect in this case, as shown in the second and fourth
lines  of Figure  11. LadderNet  only  has  the  U-Net's  com-
mon convolutional layer feature extraction function. With
the increase  in  depth  of  the  network,  the  constant  pool-
ing operation led to loss of a large number of local details.

In contrast, in our method, the Res-paths were integrated
into  the  neural  network  to  better  capture  small-shaped
blood vessels in the retina.  The multi-module fusion op-
eration not only deepened the depth of the convolutional
network, but also made up for the loss of blood vessels in
the deep learning network with the help of residual con-
nection.  MF2ResU-Net  extracted  more  details  of  blood
vessels  in  some  connection  areas  than  LadderNet  and
achieved more  ideal  segmentation  results  in  the  seg-
mentation  of  small  blood  vessels.  Therefore,  the  multi-
module  fusion  extraction  convolutional  neural  network
based  on  the  initial  module  could  make  the  features  of
small retinal vessels more discriminative.
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Figure 9   ROC curves of different models
A,  U-Net,  DeepLab  v2,  and  MF2ResU-Net  on  DRIVE.  B,  U-Net,
DeepLab v2, and MF2ResU-Net on CHASE DE1.
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Figure  10   Results  and  enlarged  versions  of  segmenta-
tion  of  different  algorithms  on  the  DRIVE  and  CHASE
DB1 datasets
A, original image. B, ground-truth. C, segmentation results of U-
Net. D, DU-Net. E, MF2ResU-Net.
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We  also  compared  our  method  with  several  recently
proposed  state-of-the-art  approaches.  In Table  6 and
7, we  summarize  the  type  of  algorithm,  year  of  publica-
tion,  and  performance  on  the  DRIVE  and  CHASE  DB1
datasets.  As  can  be  observed,  our  model  achieved  the
highest values on Sen, Spe, ACC, and AUC on the DRIVE
dataset,  which  were 0.801 3, 0.984 2, 0.970 0,  and 0.979 7,
respectively. Table  5 shows  the  statistical  results  of  the
methods  on  the  CHASE  dataset.  Our  proposed  method
achieved  the  highest  values  on  Sen,  F1,  ACC,  and  AUC,
which  were 0.810 2, 0.814 2, 0.977 6,  and 0.983 7, respect-
ively.  Thus,  the  segmentation  results  obtained  by
MF2ResU-Net were more accurate than those of the com-
pared methods.  In  general,  the  proposed  model  was  su-
perior compared  to  the  other  retinal  vascular  segmenta-
tion  algorithms.  Concretely,  LI  et  al. [29] extracted an  im-
age patch with a size of 16 ×  16, which might fall in the flat
area, and thus it was not a good choice for a high-resolu-
tion  dataset.  ORLANDO  et  al. [30] used  a  fully-connected
CRF model for blood vessel segmentation, but labeling all
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Figure 11   Comparison of detail segmentation
A,  original  image.  B,  ground-truth.  C,  U-Net  segmentation.  D,
LadderNet. E, MF2ResU-Net.

Table 6   Performance indicators of different algorithms in the DRIVE dataset

Model
DRIVE

Year Sen Spe F1-Score ACC AUC

LI et al. [29] 2016 0.756 9 0.981 6 NA 0.952 7 0.973 8

ORLANDO et al. [30] 2017 0.789 7 0.968 4 0.785 7 0.945 4 0.950 6

R2U-Net [31] 2018 0.779 9 0.981 0 0.817 1 0.955 6 0.978 4

MS-NFN [32] 2018 0.784 4 0.981 9 NA 0.956 7 0.980 7

DEU-Net [33] 2019 0.794 0 0.981 6 0.827 0 0.956 7 0.977 2

MOU et al. [34] 2020 0.801 0 0.980 0 NA 0.966 7 0.970 0

MSFFU-Net [35] 2020 0.776 2 0.983 5 NA 0.969 4 0.979 0

MF2ResU-Net 2023 0.801 3 0.984 2 0.822 3 0.970 0 0.979 7

NA represents not available by their authors.

Table 7   Performance indicators of different algorithms on the CHASE DB1 dataset

Model
CHASE DB1

Year Sen Spe F1-Score ACC AUC

LI et al. [29] 2016 0.750 7 0.979 3 NA 0.958 1 0.971 6

ORLANDO et al. [30] 2017 0.727 7 0.971 2 0.733 2 0.945 8 0.952 4

R2U-Net [31] 2018 0.775 6 0.982 0 0.792 8 0.963 4 0.981 5

MS-NFN [32] 2018 0.753 8 0.984 7 NA 0.963 7 0.982 3

DEU-Net [33] 2019 0.807 4 0.982 1 0.803 7 0.966 1 0.981 2

TAMIM et al. [36] 2020 0.758 5 0.984 6 0.758 0 0.962 0 NA

Sine-Net [37] 2020 0.785 6 0.984 5 NA 0.969 4 0.982 4

MF2ResU-Net 2023 0.810 2 0.980 9 0.814 2 0.977 6 0.983 7

NA represents not available by their authors.
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blood  vessels  was  a  challenge.  In  the  methods  proposed
in recent years [31-37], the performance was satisfactory but
the  training  procedure  was  complicated.  Although  these
methods  reached  new  state-of-the-art  performance  in
some metrics, they are not practical for real applications.
The modified MF2ResU-Net model acts as a soft and rap-
id automation  system,  which  provides  the  ophthalmolo-
gist  with  primary  information  and  knowledge  about  the
blood  vessels,  such  as  size,  tortuosity,  crossing,  lesions
structure, and hard and soft exudates. This model cannot
replace the role of ophthalmology doctors, but it can help
the doctor in early diagnosis, increasing the result accur-
acy. We plan to develop our MF2ResU-Net to other types
of  vessel  segmentation,  aiming  to  obtain  more  accurate
results  in  medical  image  analysis  tasks.  This  would  be  a
fruitful area for further work.

 4 Conclusion

In  this  paper,  to  help  computer-aided  diagnosis  on  eye
diseases and  related  conditions  and  Chinese  and  West-
ern diagnosis learning, we present a novel residual neur-
al network  based  on  U-Net  for  retinal  vessel  segmenta-
tion.  The  experimental  results  proved  that  the  method
succeeded  both  in  absolute  terms  and  in  comparison
with  nine  other  state-of-the-art  similar  methods  using
two well-known  publicly  available  datasets.  The  pro-
posed method encompasses many elements that contrib-
ute  to  its  success.  To refine the segmentation features  of
retinal vessels, we used residual paths to connect the en-
coder  and  decoder  of  the  U-Net,  and  an  ASPP  was  used
between the  encoder  and  decoder  to  obtain  global  fea-
tures.  To  improve  the  segmentation,  a  multi-model  was
employed based  on  ResU-Net  blocks.  To  test  the  per-
formance of our model, ablation and comparison experi-
ments  were  conducted  based  on  Sen,  Spe,  F1,  ACC,  and
AUC criteria on the DRIVE and CHASE datasets.  The ex-
perimental results  demonstrated  that  the  proposed  al-
gorithm was able to obtain the best values on most of the
criteria,  and  the  segmentation  results  showed  that  our
model was more robust than the compared methods on a
complex background. This means that MF2ResU-Net was
superior to  the  compared  methods  in  retinal  vessel  seg-
mentation  on  the  DRIVE  and  CHASE  DB1  datasets.
Therefore, our  model  provides  the  supplement  and  de-
velopment  of  TCM  theory  in  the  treatment  of  retina-re-
lated diseases, and then provides a reference for the par-
ticipation  scheme  of  TCM  in  the  treatment  of  retina-re-
lated diseases.
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MF2ResU-Net: 一种面向视网膜血管分割的多特征融合深度网络构架

崔振超a, b*, 宋姝洁a, b, 齐静a, b

a. 河北大学网络空间安全与计算机学院, 河北 保定 071002, 中国

b. 河北大学机器视觉工程研究中心, 河北 保定 071002, 中国

 
【摘要】 目的   为解决计算机辅助中医诊断中图像分割精确问题，提出一种基于多尺度的融合冗余连接的多

层结构模型的新型神经网络模型（MF2ResU-Net）。 方法   为获得精细化的血管特征，提出将三个 U-Net 模型进

行级联。为解决 U-Net 模型中编解码部分语义连接差异性问题，MF2ResU-Net 提出利用 shortcut 连接编解码

部分。为了更加精细化分割特征，算法将空洞空间金字塔池化模型嵌入编解码结构中，最终形成所提网络。 结

果   MF2ResU-Net 算法在视网膜血管数据集 CHASE DB1 和 DRIVE 中，利用指标敏感度（Sen）、特异性（Spe）、

精 确 性 （ ACC） 和 线 下 面 积 （ AUC） 分 别 取 得 了 0.8013 和 0.8102、 0.9842 和 0.9809、 0.9700 和 0.9776, 以 及

0.9797 和 0.9837。这些结果表明本方法优于对比方法，并且对于视网膜血管分割，本方法具有较高的有效性及

鲁棒性。 结论   本文所提的基于冗余连接的多特征融合深度学习网络模型可通过获得更加精细化特征获取的

方 式 获 得 更 加 准 确 的 视 网 膜 血 管 分 割 结 果 ， 可 为 计 算 机 辅 助 中 医 诊 断 提 供 一 种 诊 断 方 法 提 取 途 径 。

【关键词】医学图像处理；空洞空间金字塔池化；冗余连接；多级模型；视网膜血管分割
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