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ABSTRACT

Background. Sepsis is a life-threatening multiple-organ dysfunction caused by a dysregulated host response to 
infection and is the leading cause of death in non-cardiac intensive care facilities. Early reliable prediction of sepsis 
outcomes leads to cost-efficient resource allocation and therapeutic strategies. However, there are still no reliable 
markers to predict the outcome of patients at the initial stage of sepsis. Analyzing transcription profiles enables 
researchers to predict early outcomes using transcripts and their expression patterns. Transcriptomic profiling of 
septic patients has been done recently; however, analysis of prognostic outcomes is still scarce.

Objective. This study aimed to determine transcriptional indicators that may be useful in the prognosis of the severity 
of sepsis. 

Methods. This is a prospective cohort study of Filipino patients admitted for sepsis at the national tertiary referral 
hospital in Manila, Philippines. We conducted differentially expressed gene analysis, network analyses, and area 
under the curve study of publicly available datasets of surviving vs. non-surviving sepsis patients to identify candidate 
prognosticator markers. Quantitative PCR was used to characterize the expression of each marker. A model using 
ordinal logistic regression analysis was done to determine which among the markers can best predict the outcome 
of sepsis severity.

Results. We identified ACTB, RAC1, STAT3, and UBQLN1 as candidate mRNA prognosticators. The expression of 
STAT3, a gene involved in immunosuppression, is inversely correlated with the severity of sepsis. 

Conclusion. Transcriptomic markers such as STAT3 can predict the severity of patients with sepsis. Early detection of 
its inverse expression may prompt early and more aggressive management of patients.
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INTRODUCTION

Sepsis, defined as “life-threatening organ dysfunction 
caused by a dysregulated host response to infection,”1

 is a 
common condition encountered in intensive care units2 and 
is the leading cause of death in non-cardiac intensive care 
facilities.3 The effectiveness of therapy is time-dependent; 
hence, identifying appropriate treatment through accurate 
prognostication is important.4 Current sepsis prognostication 
is clinically based,5 and several proteins associated with the 
disease pathophysiology are also used as biomarkers for 
prognosis.6 However, the reliability of these tools to predict 
the outcome of patients with sepsis at diagnosis is still 
in question.6 

Transcriptomics, or the study of transcriptome – the 
set of RNA transcripts expressed by the genome, has been 
used in discovering prognostic markers in other diseases such 
as breast cancer,7 viral infections,8 and other inflammatory 
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diseases.9 This high-throughput technology may be applied 
in sepsis as the transcriptomic profiling of patients with 
sepsis has been done recently.10 However, further analysis of 
these data regarding prognostic outcomes is scarce. 

The lack of reliable prognosticating tools for sepsis with 
the availability of its transcriptomic profiles, albeit lacking 
further analyses of these datasets, motivated the work of this 
study. Therefore, this research aims to screen and evaluate 
transcripts that can predict the severity of sepsis. Specifically, 
the study seeks to: (1) identify transcripts associated with 
survival in sepsis using publicly available datasets; and 
(2) determine if the gene expression levels of the selected 
transcripts can be associated with the severity level of 
Filipino patients with sepsis. 

Sepsis is one of the leading causes of mortality world-
wide. While appropriate management based on prognosis 
is needed, available prognosticating tools for sepsis are not 
reliable, and the use of transcriptomic studies may address 
such concern.11 Despite the availability of transcriptomic 
profiles of sepsis patients, further analysis of these data to 
generate clinically significant results is lacking. This study 
identified ACTB, RAC1, STAT3, and UBQLN1 as candidate 
prognosticators of sepsis mortality through data mining.

MATERIALS AND METHODS

Selection of publicly available datasets
Datasets were obtained from the Gene Expression 

Omnibus of the National Center for Biotechnology 
Information (GEO-NCBI) and ArrayExpress of the 
European Bioinformatics Institute. The string search used 
was (sepsis and (prognos* or predic* or nonsurviv*)) AND 
"Homo sapiens" or “sepsis” to include as many datasets as 
possible. Inclusion criteria for the selection of datasets were 
as follows: (a) use of human blood samples; (b) inclusion 
of healthy controls, surviving and non-surviving sepsis 
patients; and (c) freely available and normalized microarray 
or RNASeq data. Only the studies with freely available 
datasets were used in this study. 

Screening of candidate prognosticators from 
selected datasets

Differentially expressed transcripts were identified using 
Gene Expression Omnibus 2 R-Statistic (GEO2R) – a web-
based tool in analyzing the Series Matrix data file directly 
from each of the datasets – a feature of the NCBI databases 
site. With a cut-off p-value of less than 0.001, the top 250 
differentially expressed genes (DEGs) were determined per 
dataset using this tool. The gene expression levels used were 
specifically derived from the time of diagnosis (D0 or D1) 
since this study aimed to determine the prognosis of patients 
upon diagnosis, in addition to the top 250 genes per dataset. 

Network interaction among the 250 genes per study was 
analyzed using Search Tool for the Retrieval of Interacting 
Genes/Proteins (STRING) version 9.1. Hub genes and each 

of the networks were then identified for further analysis. 
Characterization of selected candidate prognosticators was 
determined using gene annotation tools, such as Aceview, 
Database for Annotation, Visualization and Integrated 
Discovery (DAVID), and Kyoto Encyclopedia of Genes 
and Genomes (KEGG).

Selection of Study Population and Sample Handling
The identified candidate mRNA prognosticators were 

verified on the subjects from the UPMREB-approved 
study of Nevado et al. (n. p., 2014) entitled Quantitative 
molecular signatures and predictors of sepsis and the development 
of its complications using gene expression markers and pathway 
analyses. The study, approved by the University of the 
Philippines-National Institute of Health Ethics Review 
Board, included clinically diagnosed patients with sepsis 
from the University of the Philippines-Philippine General 
Hospital. Inclusion and exclusion criteria were similar to 
the parameters used to screen the databases. Patients older 
than 18 years of age and without other co-morbidities 
were selected for this study. A one-time sample collection 
was done following the study protocol of Nevado et al. 
(n. p. 2014). Patients with sepsis who qualified for this study 
were enrolled from September 2015 to February 2016.

Blood samples were extracted upon enrollment in 
the study. Total RNA extraction and isolation were done 
following the protocol of the study of Nevado et al. (n.p. 
2014). Extracted RNA was quantified using NanoDrop and 
was stored in a -80°C refrigerator. cDNA synthesis was done 
following the iScript cDNA synthesis kit Biorad.™ The 
reaction containing 1 µl reverse transcriptase, 4 µl reaction 
buffer, and 500 ng of RNA sample was added to nuclease-
free distilled water to a total of 20 µl per sample. The reaction 
was performed under the conditions of 25°C for 5 min, 42°C 
for 30 min, 85°C for 5 min, and 4°C for the remaining time.12

Primer Designing
Intronic/exonic boundaries for each candidate 

prognosticating transcripts were considered in designing 
the primers. The transcript sequences were sourced from the 
NCBI Nucleotide database. The University of California 
Santa Cruz (UCSC) human genome browser was used to 
identify the sequence of the selected variant with the lowest 
single nucleotide polymorphism (SNP) hits. Primer 3™ 
was used to design the primers from the desired sequence. 
The designed primers were then tested in silico using the 
USCS genome browser to check if there were probable 
non-specific binding to other non-target genes. The lines 
were ordered from Lifeline diagnostics. 

Quantification of Expression of Selected Candi-
date Prognosticators

We examined the clinical significance of the candidate 
prognosticators by analyzing the gene expression of their 
transcripts in actual sepsis patients. Gene expressions were 
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determined using real-time quantitative polymerase chain 
reaction (qPCR). Instructions from SYBR™ Green were 
used: 2 ul of cDNA, 8 ul of primers – both forward and 
reverse – and 10 ul dye was used to have a 20 ul reaction 
mix. The condition used for the qPCR run 950°C for 5 min, 
with 39 cycles consisting of 95°C for 45s, chosen annealing 
temperature for 45s, 72°C for 45s, read at 78°C, and 95°C 
for 45s. 18S RNA was used as the housekeeping gene. All 
primers used were 500 nM. Expression levels of candidate 
mRNA prognosticators were measured using Delta-CT.

Clinical Determination of Sepsis Survival Likelihood
Pertinent clinical values were collected from the patients. 

They were used to evaluate their respective Acute Physiology 
and Chronic Health Evaluation (APACHE) II score – a 
measure for sepsis severity - which has a corresponding 
mortality likelihood. Patients are classified into severity 
levels 1–8 according to their clinical scores: 0–4, 5–9, 10–14, 
15–19, 20–24, 25–29, 30–34, and >34, respectively.13 The 
mortality rate for each severity level are as follows: 4, 8, 15, 
25, 40, 55, 75, and 85%, respectively.13

Statistical analysis
The identified hub genes from the STRING network 

study were subjected to area under the curve (AUC) 
analysis using MedCalc statistical software. Genes with 
an AUC value of 0.9 to 1.0 were selected as the candidate 
prognosticators of this study. 

The mean expression of the level of each candidate gene 
was analyzed using one-way ANOVA. Gene expression 
levels were compared with the APACHE II scores of each 
patient using ordinal logistic regression analysis. Ordered 
logistic regression analysis was performed using Stata to 
evaluate if the change in the gene expression per candidate 
prognosticator significantly varies per severity level. A 
significant result would indicate that the components 
of the model – the relative gene expressions of the four 
candidate genes taken altogether – correlate with the 
outcome (the sepsis severity level).14 Individual p-values for 
each gene were also determined to identify which of the 
components significantly contributes to the ability of the 
model to correlate with the outcome.14 Spearman rank-order 
correlation was done to determine the relationship between 
gene expression and sepsis severity level. The significance 
level for the hypothesis testing used was set at 5%. 

RESULTS

Identification and Characterization of Candidate 
Prognosticators in Publicly Available Datasets

During the literature search, only two studies were 
able to satisfy the inclusion criteria for datasets. The first 
dataset was from the study Patterns of Gene Expression in 
Peripheral Blood Mononuclear Cells and Outcomes from Patients 
with Sepsis Secondary to Community-Acquired Pneumonia by 

Severino et al., 2014.15 The study investigated the whole-
genome gene expression profiles of mononuclear cells from 
the survivor (n=5) and non-survivor (n=5) septic patients 
and three healthy controls. The blood samples were collected 
and analyzed at the time of sepsis diagnosis and seven 
days later. The platform that they used in their study was 
Agilent-014850 Whole Human Genome Microarray 4x44K 
G4112F. The second dataset was from the survey Identifying 
Key Regulatory Genes in the Whole Blood of Septic Patients to 
Monitor Underlying Immune Dysfunctions by Parnell et al., 
2013.16 The study investigated the whole blood of patients 
from survivor (n=26) and non-survivor (n=9) patients with 
sepsis and healthy controls (n=18). Gene expressions were 
analyzed from the day of diagnosis for five consecutive 
days. Illumina HumanHT-12 V3.0 expression bead chip 
was used in their study to analyze gene expression levels. 
For both datasets, only the results from D0 or D1, the 
first day of diagnosis, were used. Only gene expressions 
from surviving and non-surviving patients were analyzed. 
Differentially expressed genes from the datasets were then 
pooled for further analysis.

Genes that highly interact with other genes are more 
likely to sensitively change in response to any perturbation on 
a given disease hence making these genes good biomarkers.17 
To determine which differentially expressed genes are 
highly interacting with other genes, STRING analysis 
was done. Analyzing gene annotations was also done to 
identify whether the highly interacting genes have biological 
implications in the pathophysiology of sepsis. Hence, genes 
with annotated immunity or related to such associations 
were identified using functional annotation software such as 
DAVID and KEGG. Fourteen differentially expressed genes 
were identified based on these analyses. The selected 14 genes 
were further narrowed to 4 (Table 1) based on their AUC 
values which were calculated. AUC analysis shows how a 
certain expression of a gene predicts the outcome we want to 
assess, which is in our case, the survivorship of patients with 
sepsis from the datasets. A value near 1.0 or 0.99 indicates 
that the expression of the gene highly predicts the outcome 
being analyzed. From STRING, AUC, and gene annotation 
analyses, the candidate prognosticators were determined 
as shown in Table 1.

Clinical Evaluation of Identified Prognosticators
A total of 40 patients from the project Quantitative 

molecular signatures and predictors of sepsis and the development 
of its complications using gene expression markers and pathway 
analyses were included in the study. 

Most of the patients were men and within the age range 
of 45–54 years (Table 2). Sixty percent (24 out of 40) were 
classified under categories 3 and 4, with 12 patients each. 
None of them were under category 7, and only one patient 
was classified with a severity score of 8. The mean relative 
gene expressions of the candidate prognosticators were 
analyzed at each level as shown in Figure 1. 
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Patients in severity level 1 were all healthy controls (5 
out of 40). Comparing the relative expressions per severity 
level, all candidate prognosticators had significantly 
different expression profiles compared to control (One-way 
ANOVA p-value < 0.05). However, as seen in Figure 1, only 
STAT3 had a significantly different expression for all levels, 
especially at sepsis severity levels 3 and 4 (Dunnett’s test 
p-value < 0.05).

The four candidate genes were correlated significantly 
with the sepsis severity level (p-value of 0.0304) (Table 3) 
for the model that included all the predictors. Examining 
the individual p-values of the genes, only STAT3 expression 
(p-value = 0.005) had a significant gene expression change 
across the severity levels.

There was a moderate negative correlation between the 
STAT3 gene expression and sepsis severity levels, which was 
statistically significant (rs(40) = -0.429, p = 0.006) (Figure 
2). Therefore, 43% of the variation observed is attributed 

to the relationship between the gene expression level of 
STAT3 and the severity level of sepsis. 

DISCUSSION

The study identified ACTB, RAC1, STAT3, and 
UBQLN1 as candidate prognosticators of sepsis mortality 
through data mining of publicly available datasets. From 
the ordered logistic regression model of the four transcripts, 
only the expression of STAT3 was significantly associated 
with the severity level of sepsis patients (p-value = 0.05). 
Furthermore, Spearman's rank-order correlation showed 
that the downregulation of STAT3 is correlated with sepsis 
severity level (rs(40) = -0.429, p = 0.006). 

The involvement of the four candidate genes can be 
implicated in the pathophysiology of sepsis. The canonical 
pathology of sepsis is attributed to the unregulated hyper-
inflammatory response of the body to an infectious etiology. 

Table 2. Patient demographics per category of sepsis severity 
level

Severity level 1 2 3 4 5 6 7 8
Gender

Men 4 3 9 8 0 1 0 1
Women 2 1 3 4 3 1 0 0
Total 6 4 12 12 3 2 0 1

Age (yrs.)
18–24 2 1 0 0 0 0 0 0
25–34 2 1 3 1 1 0 0 0
35–44 2 1 3 2 0 0 0 0
45–54 0 1 4 6 2 1 0 1
55–64 0 0 2 2 0 1 0 0
Total 6 4 12 12 3 2 0 1

Table 1. Identified candidate prognosticators
AUC Gene code Gene name Brief gene description
1.000 UBQLN1 Ubiquitin 1 Promotes delivery of 

ubiquitinated proteins 
to the proteasome for 
degradation

0.996 RAC1 Ras-related C3 
botulinum toxin 
substrate 1 (rho 
family, small GTP 
binding protein Rac1)

Involved in regulating 
cell cycle progression, 
specifically in the G2/M 
transition, and is required 
for cell proliferation

0.991 STAT3 Signal transducer 
and activator of 
transcription 3  
(acute-phase 
response factor)

STAT3 codes for 
transcription factors 
involved in the TH1 
and THαβ immunity, 
specifically in Th17

1.000 ACTB Actin, beta Structural gene among the 
transcripts, codes for actin

Figure 1. Relative gene expression levels of candidate prognosticators per severity level as per APACHE II scores.
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This hyper-inflammation leads to coagulative problems that 
eventually cause end-organ damage, as seen in severe cases 
of sepsis.18,19

Several cell-signaling pathways are involved in the 
hyper-inflammatory pathology of sepsis. These pathways 
include hyper-activation and proliferation of cells as in 
leukocytosis and cytokine storm observed in septic patients. 
One of the signaling molecules found in these pathways is 
RAS-related C3 botulinum toxin substrate 1 (RAC1). Being 
part of the Ras-related superfamily of GTP-binding proteins, 

it regulates cell cycle progression, specifically in the G2/M 
transition, and is required for cell proliferation.20 Aside 
from cell proliferation, RAC1 has also been implicated with 
reactive oxygen species (ROS) production and inflammatory 
responses.21 RAC 1, a protein kinase, may also regulate the 
activation of enzymes involved in the hyperinflammatory 
response.22

UBQLN1 is part of the ubiquitin family of ubiquitin 
receptors that promote the delivery of ubiquitinated proteins 
to the proteasome for degradation.23 It may play a role 

Figure 2. STAT3 gene expression and sepsis severity levels. Using Spearman rank-order correlation, STAT3 gene 
expression contribute 43% of the variability across sepsis severity levels; (rs(40) = -0.429, p = 0.006).

Table 3. Ordered logistic regression (including all candidate prognosticators)
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in degrading damaged proteins due to the hyperactivity 
within cells due to increased transcription of cytokines or 
chemokines in response to sepsis. A specific function of 
UBQLN1 involves interacting with HERC3, an E3 ligase, 
that stabilizes the interaction of HERC3 to proteosome and 
NFkB.24 This interaction of HERC to NFkB might also be 
associated with the inflammatory role of UBQLN1 in sepsis. 

ACTB, the only structural gene among the candidate 
transcripts, codes for actin.25 Actin has a variety of cellular 
processes involved in the immune function, such as 
intercellular interactions, endocytosis, cytokinesis, signal 
transduction, and maintenance of cell morphology;26 
therefore, involvement of actin in the pathophysiology of 
sepsis is not surprising. Molecular transport of substances 
within and outside cells and maintaining cellular integrity 
are essential in innate and adaptive immunity; hence, 
cytoskeletal proteins also play an essential role in regulating 
inflammation.27 A recent study compared patients’ serum 
actin/gelsolin ratio with their APACHE II scores and 
found that they may serve as complementary prognostic 
markers of sepsis.28 

Although it is more generally accepted that a hyper-
activated innate immune response is the culprit for the 
pathological effects of sepsis, the emerging concept of 
adaptive immune suppression is beginning to take part 
in the pathology of sepsis.29 Recent studies in non-
surviving patients of sepsis show reduced inflammatory 
responses leading to shock or different susceptibility 
to other infections that might exacerbate the septic 
condition.30 Downregulation of STAT3, a gene coding for 
pro-inflammatory regulator proteins,31 might be involved 
in the immunosuppression observed in the pathology of 
sepsis. STAT3 codes for transcription factors in TH1 and 
THαβ immunity, specifically in Th17.32 Th1 or T-helper 
1 cells are part of the CD4+ effector lineage that promote 
cell-mediated immune response and play a role in defense 
against intracellular infections;33 Th17 or T-helper 17 cells 
are a unique lineage of CD4+T-cells dedicated to producing 
interleukin 17 (IL-17), a very potent pro-inflammatory 
cytokine affecting a variety of tissue stromal cells.34 With 
these molecules downstream of STAT3, downregulation of 
the gene promotes adaptive immune suppression in sepsis. 
A study analyzed the immunosuppressive arm of sepsis 
pathology and showed that most adaptive immunity genes 
were downregulated, including STAT3.35 This supports the 
finding that STAT3 downregulation is associated with the 
severity of sepsis in patients. Hence, the significant changes 
in STAT3 expression across different sepsis severity levels and 
its significant contribution to the predictive model of sepsis 
prognosis are all congruent with other studies supporting 
the immunosuppressive arm of the pathophysiology. 

The use of transcriptomics in the field of molecular 
diagnostics and prognostics proves to be a high-throughput 
approach in understanding the complexity of sepsis.36 Data 
from these studies provide unbiased results in identifying 

candidate biomarkers, reducing investigator bias. In this 
approach, almost all known genes are interrogated rather 
than a specific set of genes chosen by the investigator 
based on a priori and potentially biased assumptions. This 
neutral approach is particularly suited to sepsis, where the 
pathophysiology is not well elucidated. Transcriptomics 
in the discovery of prognosticating biomarkers has been 
done in other diseases such as cancer and trauma, and 
sepsis;37-39 instead of mRNA, most of these studies utilized 
micro-RNAs. 

RNA expression in blood is labile, and its regulation 
can reflect either the normal or pathological state of an 
individual.40 With this, RNA profiles, such as mRNA 
expression level, have been used in several diseases such 
as cancer, as a diagnostic or prognostic tool.41 However, 
heterogeneity of cells present in blood can generate 
misleading results; hence interpretation of transcriptional 
profiles must be in the context of the cellular composition 
of the blood being sampled.42 The use of subset cells, 
peripheral blood mononuclear blood cells (PBMCs), attempt 
to control the effect of cell heterogeneity present in the  
transcription profiles.43

Due to the limited sample size of non-surviving patients 
(n=1), ROC curve and AUC analyses were not performed 
because these tests require at least two samples in a category. 
Unfortunately, only one patient was classified under  
severity 7. Ideally, the study should have analyzed different 
AUC values for single and combinatorial gene panels, with 
and without a standard clinical scoring system for sepsis 
progression (e.g., APACHE II, SOFA). Based on the lite-
rature, panel biomarkers for sepsis coupled with clinical 
scoring systems yielded better AUC values.1 Although we 
determined that the model with all the four genes is associated 
with the severity levels of sepsis patients, the study cannot 
determine whether these gene/s have a better prognos-
ticating value than the APACHE scoring or if combining 
APACHE scoring with the gene/s can increase sensitivity 
and specificity of prognosticating sepsis patient outcome.

Nevertheless, the study showed that differentially 
expressed genes mined from other databases with a highly 
heterogeneous sample population could be used in a local 
setting like the Philippine General Hospital. From the 
four genes - ACTB, RAC1, STAT3, and UBQLN1 - we 
selected from data mining two publicly available datasets, 
we determined that the downregulation of STAT3 is 
significantly associated with the degree of sepsis severity. 

CONCLUSION

ACTB, RAC1, STAT3, and UBQLN1 were identified as 
candidate prognosticators of sepsis mortality through data 
mining of publicly available datasets. Various bioinformatics 
tools such as GEO2R, STRING, were used to identify the 
transcripts. Among the four transcripts, the gene expression 
of STAT3 is significantly associated with the severity level 
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of Filipino patients with sepsis. Moreover, the expression 
of STAT3 is significantly inversely proportional to the 
severity outcome. Further studies can be done to validate 
the involvement of STAT3 in the pathophysiology and 
severity of sepsis through the use of biological models. 
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