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ABSTRACT 
 
Aims: VraSR and GraSR were shown to be important in conferring intermediate vancomycin resistance in VISA. 

Nevertheless, the exact mechanism modulated by these systems leading to the development of VISA remains unclear. 
We employed a proteomic approach to determine the VraS and GraR regulons and subsequently derive the possible 
vancomycin resistance regulatory pathway(s) in the Mu50 lineage of Staphylococcus aureus.  
Methodology and results: Staphylococcus aureus strains Mu50Ω, Mu50Ω-vraSm and Mu50Ω-vraSm-graRm are 

isogenic strains with ascending levels of vancomycin resistance. Total proteins were extracted from the 3 strains and 
trypsin digested prior to protein isolation and identification by LC-ESI MS/MS and PLGS 2.4. Expression profiles of 
resulting proteins were analyzed using Progenesis LC/MS software. Differential expression profiles revealed 3 regulons, 
each controlled by VraS (Mu50Ω-vraSm vs Mu50Ω), GraR (Mu50Ω-vraSm-graRm vs Mu50Ω-vraSm) and VraS-GraR 
(Mu50Ω-vraSm-graRm vs Mu50Ω), respectively. The regulon down-regulated by VraS in Mu50Ω-vraSm were proteins 
associated with virulence (MgrA, Rot, and SarA), while GraR up-regulated resistance-associated proteins (TpiA, ArcB 
and IsaA) in Mu50Ω-vraSm-graRm. The VraS-GraR regulon mediated both up-regulation of resistance-associated 
proteins (ArgF, ArcB, VraR and SerS) and down-regulation of virulence-associated protein GapB.  
Conclusion, significance and impact of study: Down-regulation of virulence- in concert with up-regulation of 

resistance-associated proteins appears to be integral for development of intermediate-vancomycin resistance in the 
Mu50 lineage of S. aureus. 
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INTRODUCTION 
 

 

Medical attention on Staphylococcus aureus has 
increased ever since reports of strains having various 
levels of resistance towards vancomycin – “drug of last 
resort” for S. aureus infections – were published (CDC 
1997; Hiramatsu et al., 1997; Ploy et al., 1998; Bierbaum 
et al., 1999; Kim et al., 2000; Oliveira et al., 2001; CDC 
2002; Denis et al., 2002; Tiwari et al., 2006; Aligholi et al., 
2008; Saha et al., 2008; Azimian et al., 2012). The 
mechanism behind complete vancomycin resistance 
exhibited in vancomycin-resistant S. aureus (VRSA) has 
been shown to be due to the transfer of a multi-resistant 
conjugative plasmid harboring the vanA operon from 
Enterococcus faecalis to S. aureus (Weigel et al., 2003). 
However, genetic factor(s) leading to the development of 

intermediate vancomycin resistance in S. aureus 
(vancomycin-intermediate S. aureus, VISA) is still not well 
understood.  

A number of genes (vraS, graR, pbp4, mgrA, sarA, 
isdE, agrC) have been reported to be associated with 
VISA (Finan et al., 2001; Cui et al., 2009; Trotonda et al., 
2009; Howden et al., 2010). Among these, 2 two-
component regulatory systems in S. aureus, VraSR 
(vancomycin-resistance associated sensor/regulator) and 
GraSR (glycopeptides-resistance sensor/regulator), were 
recently shown to be associated with intermediate 
vancomycin resistance in the Mu50 (the world's first 
reported VISA) lineage of S. aureus strains (Cui et al., 
2009). The report showed that the introduction of mutated 
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vraS and graR in Mu50Ω, a susceptible isogenic strain of 
Mu50, resulted in a remarkable increase in its 
vancomycin resistance (Cui et al., 2009) (Figure 1). 

Nevertheless, the pathway(s) regulated by these 2 two-
component regulators in achieving S. aureus intermediate 
resistance remains obscured. 

 

 
 
Figure 1: Conversion of vancomycin-susceptible S. 
aureus (VSSA) to a “beginner VISA” and later the Mu50-
like VISA through stepwise acquisition of mutated vraS 
and graR genes (Cui et al., 2009).   
 

In this study, we employed a proteomic approach 
using liquid chromatography-electrospray ionization 
tandem mass spectrometry (LC-ESI MS/MS) technology 
to define probable regulons regulated by each of the 
VraSR and GraSR systems, and subsequently derived 
the possible vancomycin intermediate-resistance 
regulatory pathway in S. aureus strains of the Mu50 
lineage.  
 
MATERIALS AND METHODS 
 
Bacterial strains and growth conditions 
 

Three isogenic strains of S. aureus, namely Mu50Ω, 
Mu50Ω-vraSm and Mu50Ω-vraSm-graRm (minimum 
inhibitory concentration (MIC) of vancomycin = 1 mg/L, 
4.5 mg/L and 6 mg/L, respectively), used in this study 
have been described previously (Cui et al., 2009). Briefly, 

Mu50Ω is a VSSA strain found at the same site where 
Mu50 was isolated. Chromosomal substitution of Mu50 
vraS into Mu50Ω resulted in the strain Mu50Ω-vraSm, 
while Mu50 graR substitution in the chromosome of 
Mu50Ω-vraSm resulted in the strain Mu50Ω-vraSm-
graRm. Strains were cultured in Brain Heart Infusion 
(BHI) broth (Becton Dickinson, USA) at 37 °C prior 
harvest at an optical density of 540 nm (OD540) = 6. 
  
Preparation of protein extracts 
 

Fifty mL of bacterial culture for each tested strain was 
used for protein extraction. Cultures were pelleted and 
resuspended in 5 mL lysis buffer (1 mM CaCl2, 1 mM 
MgCl2 and protease inhibitor (Roche, Switzerland) in 
phosphate buffered saline). Cells were then lysed with 
lysostaphin (Sigma Aldrich, USA) prior digestion with 
DNase I (Sigma Aldrich, USA). Cell debris was separated 
from proteins by centrifugation for 40 min at 4 °C and 
8,000 x g. The proteins were precipitated by overnight 

incubation of the supernatant at −20 °C with ice cold 
acetone and collected via centrifugation for 40 min at 4 °C 
and 8,000 x g. The protein extracts were then air-dried 
and resolved in lysis buffer. 
 
 
 

Protein clean-up and quantification 

 
Extracted proteins were purified using EttanTM 2-
Dimensional (2D) Clean-Up Kit (Bio-Rad, Hercules CA, 
USA) according to manufacturer’s instruction and 
resolved in a buffer solution containing 8 M urea and 100 
mM Tris (pH 8.5). Protein concentrations were 
determined using EttanTM 2-D Quant Kit (GE Healthcare 
Bio-Sciences Corp., USA) and absorbance was read at 
480 nm using a spectrophotometer. Measurements were 
performed three times for each strain.  
 
Protein identification using nanoLC-ESI MS/MS  
 
nanoLC-ESI MS/MS analysis 
 
Proteins were trypsin digested (Becher et al., 2009) prior 
separation by reversed phase liquid chromatography and 
subsequent ESI tandem mass spectrometry. NanoLC-ESI 
MS/MS analysis was performed using a nanoACQUITYTM 
UPLC system (Waters, USA) coupled to a Q-Tof 
PremierTM mass spectrometer (Waters, USA). The 
analysis was repeated 3 times for each strain.  

Peptides were loaded onto a trap column 
(nanoAcquity UPLCTM Trap Column, Symmetry® C18, 5 
µm, 180 µm × 20 mm, Waters, USA). Following that, 
elutions were performed onto an analytical column 
(nanoAcquity UPLCTM column, BEH130 C18 1.7 µm, 75 
µm x 200 mm, Waters, USA) by a binary gradient of 
buffer A (water with 0.1% formic acid) and B (acetonitrile 
with 0.1% formic acid) over a period of 120 min with a 
flow rate of 0.3 µL/min. An electrospray was created from 
the PicotipTM EMITTER (SilicaTipTM, FS360-20-10-N-20-
C6.35CT, none coating, New Objective, USA) by the 
application of 2.5-3.0 kV.  

A full scan in the Q-Tof (m/z 50-1990) with a 

resolution of 10,000 was performed for MS/MS analysis 
and the precursors were excluded for 1 s.     

 
Protein identification 

 
All MS/MS samples (*.raw files) were searched against a 
database composed of all S. aureus protein sequences 
extracted from UniProt using ProteinLynx Global Server 
(PLGS) 2.4 (Waters, USA) as the search engine. The 
samples were searched with trypsin as the primary digest 
reagent and allowing for 1 missed cleavage site. 
Resulting *.xml files were further analyzed for differential 
protein expression.      
 
Differential protein expression analysis 
 
Differential protein expression profiling was performed 
using Progenesis LC-MS software version 4.0 (Nonlinear 
Dynamics, UK). Peptides with charge states 1+ and ≥ 4+ 
were omitted, and those with score < 1 as well as hits 
equal to 1 were excluded. The resulting false positive rate 
for protein identification was set at ≤ 0.05%. Protein 
inventories generated were then compared between the 3 
isogenic strains to identify the differentially expressed 
proteins. A fold change cutoff of ≥ 2 was applied.  
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RESULTS 

 
Comparative proteomic profiling of three tested strains 
(Mu50Ω, Mu50Ω-vraSm and Mu50Ω-vraSm-graRm) 
revealed only 21 differentially expressed proteins 
regulated by the 3 distinct regulons: VraS (comparative 

proteomic profiling between Mu50Ω and Mu50Ω-vraSm), 
GraR (Mu50Ω-vraSm vs Mu50Ω-vraSm-graRm) and 
VraS-GraR (Mu50Ω vs Mu50Ω-vraSm-graRm). 

 
Table 1: Differentially expressed proteins in Mu50Ω-vraSm versus Mu50Ω with a fold change cutoff of ≥2. 

 

Domain ORF No. Product/Function 
Expression 
Changes 

COG 
Functional 
Category 

Information storage 
and processing 

SAV1764 HTH type transcriptional regulator rot (Rot) Down-regulated K 
SAV0616 Transcriptional regulator sarA (SarA) Down-regulated K 
SAV0686 HTH type transcriptional regulator mgrA (MgrA) Down-regulated K 

Cellular processes 
and signaling 

SAV2569 Probable transglycosylase isaA (IsaA) Down-regulated M 
SAV0111 Immunoglobulin G binding protein A (Spa) Down-regulated M 

 
Metabolism 

SAV0774 Triosephosphate isomerase (TpiA) Down-regulated G 
SAV0605 Alcohol dehydrogenase (Adh) Down-regulated C 
SAV1553 Superoxide dismutase Mn Fe 1 (SodA) Down-regulated P 

Poorly characterized SAV1473 DNA binding protein HU (Hup) Down-regulated R 
COG (cluster of orthologous groups) categories: K, transcription; M, cell wall/membrane/envelope biogenesis; G, carbohydrate transport and metabolism; 
C, energy production and conversion; P, inorganic ion transport and metabolism; R, general function prediction only.       
 
Table 2: Differentially expressed proteins in Mu50Ω-vraSm-graRm versus Mu50Ω-vraSm with a fold change cutoff  

               of ≥2. 
 

Domain ORF No. Product/Function 
Expression 
Changes 

COG 
Functional 
Category 

Metabolism 
SAV0774 Triosephosphate isomerase (TpiA) Up-regulated G 
SAV2634 Ornithine carbamoyltransferase, catabolic (ArcB) Up-regulated E 

Cellular processes 
and signaling 

SAV2569 Probable transglycosylase isaA (IsaA) Up-regulated M 

COG (cluster of orthologous groups) categories: G, carbohydrate transport and metabolism; E, amino acid transport and metabolism; M, cell 
wall/membrane/envelope biogenesis.    

 
Differential protein expression regulated by VraS 

 
Comparative proteomics revealed that all 9 differentially 
expressed proteins were down-regulated in Mu50Ω-
vraSm compared to its parental Mu50Ω strain (Table 1). 
Among them, down-regulation of immunoglobulin G 
binding protein A (Spa) was the most significant, with a 
fold change of > 10. Interestingly, the SarA family proteins 
(transcriptional regulator SarA; HTH type transcriptional 
regulator, MgrA and Rot) constitute majority of the down-
regulated proteins.  
 
Differential protein expression regulated by GraR 

 
On the other hand, there appears to be only 3 
differentially expressed proteins regulated by GraR, and 
these proteins were unanimously up-regulated in Mu50Ω-
vraSm-graRm compared to Mu50Ω-vraSm (Table 2). 
 
Differential protein expression regulated by VraS-
GraR 

 
Interestingly, comparison between the protein inventories 

of Mu50Ω-vraSm-graRm with Mu50Ω (VraS-GraR 
regulon) generated a relatively divergent set of proteins, 
whereby the proteins regulated by VraS-GraR were 
almost, if not all, dissimilar with those regulated singly by 
VraS or GraR. Seven proteins were found to be up-
regulated in Mu50Ω-vraSm-graRm strain, while only 2 
proteins were down-regulated in comparison to Mu50Ω 
(Table 3).  
 
DISCUSSION 

 
Many reports have published on genetic determinants 
found to be responsible for intermediate vancomycin 
resistance in S. aureus. A larger proportion of these 
reports utilized gene expression studies to track the 
genetic changes responsible for the transformation of 
VSSA to VISA (Kuroda et al., 2000; Mongodin et al., 
2003; Cui et al., 2005; McAleese et al., 2006), while 
reports using a proteomic approach have also been 
published in recent years (Pieper et al., 2006; Scherl et 
al., 2006). 

Studies have shown that the proteins of a cell are 
continually adjusted to withstand harsh and sudden
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Table 3: Differentially expressed proteins in Mu50Ω-vraSm-graRm versus Mu50Ω with a fold change cutoff of ≥2. 

 

Domain ORF No. Product/Function 
Expression 
Changes 

COG 
Functional 
Category 

Information 
storage and 
processing 

 
SAV0009 

 
Seryl tRNA-synthetase (SerS) 

 
Up-regulated 

 
J 

Cellular processes 
and signaling 

SAV1423 Peptide methionine sulfoxide reductase MsrB 
(MsrB) 

Up-regulated O 

SAV1884 Response regulator protein vraR (VraR) Up-regulated T 

Metabolism SAV1169 Ornithine carbamoyltransferase (ArgF) Up-regulated E 
SAV2634 Ornithine carbamoyltransferase, catabolic (ArcB) Up-regulated E 
SAV1422 Glucose specific phosphotransferase enzyme IIA 

component (Crr) 
Up-regulated G 

SAV2688 Lactonase drp35 (Drp35) Up-regulated G 
SAV1687 Glyceraldehyde-3-phosphate dehydrogenase 2 

(GapB) 
Down-regulated G 

SAS044 Probable tautomerase SA1195.1 (SAS044) Down-regulated Q 
COG (cluster of orthologous groups) categories: J, translation, ribosomal structure and biogenesis; O, post-translational modification, protein turnover, 
chaperones; T, signal transduction mechanisms; E, amino acid transport and metabolism; G, carbohydrate transport and metabolism; Q, secondary 
metabolites biosynthesis, transport and catabolism.     
 
environmental changes (Renzone et al., 2005). These 

differences in protein expression profiles of cells could be 
investigated by proteomic approaches (Hecker et al., 
2003). As a matter of fact, antimicrobial resistance-related 
proteins of many microorganisms have been explored via 
proteomics (Diniz et al., 2004; Soualhine et al., 2005; 
Pieper et al., 2006; Bore et al., 2007; Lis et al., 2008; 
Fischer et al., 2011). In addition, proteomic approaches 
have been applied to uncover molecular mechanisms 
responsible for bacterial drug resistance (Su et al., 2010).  

For this study, we used 3 isogenic strains which were 
specifically engineered to mimic the VSSA to VISA 
transformation in the Mu50 lineage of strains via the 
VraSR-GraSR pathway (Cui et al., 2009). The lack of 

isogenic vancomycin-susceptible strains that could be 
considered the parental strains of VISA isolates has been 
a principal problem in mechanistic studies, hindering the 
possibility of attributing genotypic and phenotypic 
differences to a particular antibiotic susceptibility 
phenotype. The availability of Mu50Ω in this study, 
representing the isogenic susceptible counterpart of 
Mu50Ω-vraSm and Mu50Ω-vraSm-graRm strains, granted 

us an opportunity to determine changes in protein 
expression that are most likely associated with 
vancomycin intermediate resistance. Due to the isogenic 
nature of these 3 strains, they were very useful in tracking 
the proteomic changes in a VSSA (Mu50Ω) as it 
progresses to become a Mu50-like VISA (Mu50Ω-vraSm-
graRm) via mutations in the vraS and graR genes. Using 
a proteomic approach to study the differential protein 
expression of the 3 isogenic strains, we demonstrated 
that acquisition of intermediate level of vancomycin 
resistance in Mu50 lineage of S. aureus strains seems to 
be accomplished in 2 phases. These include the initial 
down-regulation of genes involved in virulence regulated 
by VraSR, and subsequent up-regulation of cell wall 
metabolism-associated genes by GraSR.  

Down-regulation of bacterial virulence appeared to be 
mediated by VraS through a complex regulatory network 
involving mainly SarA and SarA homologs (Rot, MgrA). 
SarA is a regulatory locus with a functional role in 
controlling the expression of a number of extracellular and 
cell-wall associated proteins (Cheung et al., 1992). In 
addition, SarA (Rechtin et al., 1999), as well as Rot 
(McNamara et al., 2000), are both global regulators of 
virulence gene expression in S. aureus. Similarly, with the 
aid of a mice model, mgrA was shown to play an 
important role in the establishment and progression of 
septic arthritis and sepsis, indicating its role in virulence 
expression (Jonsson et al., 2008). mgrA and rot are both 
reported to be positive regulators of sarS (Said-Salim et 
al., 2003; Oscarsson et al., 2005), where its up-regulation 
will ultimately lead to increased levels of spa expression 
(Cheung et al., 2001). Inoculation of Spa+ strains into 
mice were shown to cause higher mortality compared to 
infection by Spa- strains (Patel et al., 1987). Taking it all 
together, it appears that the down regulation of the 
network of SarA-Rot-MgrA-Spa virulence factors, via 
VraS regulation, will enable an initially vancomycin 
susceptible S. aureus (as represented by Mu50Ω, 
vancomycin MIC = 1 mg/L) to achieve the resistance level 
of a VISA (Mu50Ω-vraSm, vancomycin MIC = 4.5 mg/L).  

While VraS appears to modulate many proteins which 
are generally involved in staphylococcal virulence to 
achieve vancomycin resistance, only 3 proteins (TpiA, 
ArcB and IsaA) were found to be differentially regulated 
by GraR to lead towards an increase of vancomycin MIC 
from 4.5 mg/L (Mu50Ω-vraSm) to 6 mg/L (Mu50Ω-vraSm-
graRm). Interestingly, these 3 proteins are mainly 
associated with nutrient metabolism and cell wall 
biogenesis. Triosephosphate isomerase (TpiA) is needed 
by the cell for efficient carbohydrate metabolism 
(Gunsalus et al., 1955), while the catabolic ornithine 
carbamoyltransferase (ArcB) is important for arginine 
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metabolism when the staphylococci are grown in 
anaerobic conditions (Cunin et al., 1986). IsaA is a 
member of lytic transglycosylases, which acts by 
catalyzing the cleavage of β-1,4-glycosidic bonds 
between N-acetylmuramic acid and N-acetylglucosamine 
residues of peptidoglycan, leading to increased autolytic 
activity (Holtje et al., 1975). Higher levels of IsaA in 
Mu50Ω-vraSm-graRm strain suggested that increased 
vancomycin resistance is accompanied by higher autolytic 
activity. These features are especially similar to those of 
Mu50 VISA isolates (Hanaki et al., 1998). Despite the 

importance of GraR in acquisition of VISA phenotypes 
(Neoh et al., 2008; Howden et al., 2010), it appears that, 
on its own, this regulator will only mediate the regulation 
of minimal proteins, resulting in only an increase of 2 
mg/L in vancomycin MIC. Nevertheless, even though only 
3 proteins were regulated by GraR, these proteins may 
indicate the transition point of a “beginner VISA” (Mu50Ω-
vraSm, vancomycin MIC = 4.5 mg/L) from virulence 

down-regulation to revealing resistance-enhancing 
characteristics. 

We expected the comparison of differential protein 
profiles between Mu50Ω-vraSm-graRm with Mu50Ω to 

reveal a composite inventory made up of proteins 
differentially regulated singly by VraS and GraR. 
Intriguingly, this hypothesis was wrong. An almost 
completely different set of proteins appeared to be 
regulated by the VraS-GraR regulon, where this 
combined regulon could affect the jump in vancomycin 
MIC from 1 mg/L (Mu50Ω) to 6 mg/L (Mu50Ω-vraSm-
graRm). Nevertheless, as vancomycin targets the cell 

wall, we noticed that even though the protein inventory 
was different from that of VraS and GraR, VraS-GraR still 
appears to regulate mostly cell wall metabolism-
associated proteins.  

We were curious to note that, ArcB (which was also 
up-regulated via GraR modulation) and also another 
enzyme involved in arginine metabolism, the ornithine 
carbamoyltransferase (ArgF), were up-regulated via the 
VraS-GraR regulon. Reports have shown the importance 
of glucose metabolism in S. aureus for the generation of 
D-fructose-6-phosphate and finally glucosamine-6-
phosphate. These molecules are precursor metabolites 
for peptidoglycan, which are the building blocks needed 
for cell wall thickening, the salient VISA phenotype (Cui et 
al., 2003). To this end, VISAs are predicted to shunt 
glucose molecules from the glycolytic pathway to the 
peptidoglycan biosynthesis pathway. This is a process 
which would likely disturb the energy metabolism of the 
cells (Cui et al., 2000). Consequently, bacterial cells have 
to rely on alternative energy source(s) for survival. 
Studies have shown that arginine can serve as the sole 
energy source for S. aureus growth if glucose is not 
available (Makhlin et al., 2007). In arginine biosynthesis, 
ArgF is involved in the formation of citrulline by catalyzing 
the transfer of carbamoyl moiety of carbamoylphosphate 
to 5-amino group of ornithine; whereas ArcB catalyzes the 
reverse reaction, which is the phosphorolysis of citrulline 
to yield ornithine and carbamoylphosphate. The latter 
reaction is part of bacterial arginine degradation process 

which converts arginine to ornithine, ammonia, and 
carbon dioxide, yielding 1 mol of ATP per mol of arginine 
consumed (Beenken et al., 2004). We suspect that the 

increased expression of both ArcB and ArgF proteins in 
Mu50Ω-vraSm-graRm in this study serves to initiate the 
utilization of arginine as an energy source, compensating 
for reduced energy levels due to increased glucose 
metabolism for cell wall thickening. Moreover, elevated 
expression of ArcB and ArgF in our study indicates that 
arginine metabolism might play a role in this alternative 
pathway for cell wall synthesis in VISA as shown from the 
study.   

Besides arginine, serine also appears to be an 
important amino acid in vancomycin resistance modulated 
via VraS-GraR regulon, as expression of the enzyme 
seryl tRNA-synthetase was also increased in Mu50Ω-
vraSm-graRm. Increased cell wall biosynthesis is a key 
feature commonly found in S. aureus strains with reduced 
susceptibility to vancomycin (Howden et al., 2010). 

Nascent peptidoglycans are cross-linked by inter-peptide 
bridge formed using aminoacyl-tRNAs as amino acid 
residues donors. Generally, the inter-peptide bridges 
constitute 5 glycine residues (Schneider et al., 2004). 

However, altered peptidoglycan cross bridges, with serine 
residues in place of glycine, has been shown to contribute 
towards increased glycopeptide resistance (Billot-Klein et 
al., 1996). Therefore, we postulated that the enhanced 

levels of seryl-tRNAs might be needed to mediate 
incorporation of serine residues during peptidoglycan 
biosynthesis in Mu50Ω-vraSm-graRm.   

Hanaki et al. (1998) unraveled two important features 

of Mu50, that are the accelerated release of cell wall 
materials into the culture medium, in addition to increased 
autolysis, which IsaA probably plays a role. Increased cell 
wall turnover could bring about a great loss of resources 
for the bacteria if not recovered, since peptidoglycan 
comprised for more than 20% of the weight of Gram-
positive cells (Reith et al., 2011). In the case of Mu50Ω-
vraSm-graRm, we deduced that the cell increases its 
glucose specific phosphotransferase enzyme IIA 
enzymes via VraS-GraR regulation, to recover the amino 
sugars N-acetylglucosamine and N-acetylmuramic acid 
which were lost during cell wall turnover. 

Besides cell wall metabolism associated proteins, the 
VraS-GraR regulon also appears to regulate proteins 
involved in cellular processes and signaling, namely, 
VraR and peptide methionine sulfoxide reductase (MsrB) 
in Mu50Ω-vraSm-graRm. In our study, the VraR protein 

seems to be integral in down-regulating the SarA-Rot-
MgrA-Spa virulence factors in allowing bacteria to achieve 
the “beginner” level of vancomycin intermediate-
resistance. The up-regulation of VraR via the VraS-GraR 
regulon might have also further contributed to down-
regulation of the SarA-Rot-MgrA-Spa network in the cell’s 
process of resisting vancomycin. 

MsrB is a bacterial Msr enzyme which protects the cell 
against oxidative damage by reduction of R-epimer of 
methionine sulfoxide (R-MetO) molecules. Vancomycin 
and some bactericidal antibiotics has been reported to 
induce oxidative stress as observed in a wild-type strain 
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of S. aureus that lethal concentration of this antibiotic 
could increase the production of hydroxyl radicals in the 
cells (Kohanski et al., 2007). These highly reactive 

species will affect bacterial macromolecules leading to the 
oxidation of DNA, lipids and proteins (Clements et al., 
1999). It is interesting to observe that, in our study, even 
without vancomycin induction prior protein extraction of 
the strains, an intact Mu50 VraS-GraR regulon will result 
in increased MsrB expression, indicating the 
preparedness of the cell to counter any possible 
vancomycin/antibiotic attack.  
 
CONCLUSION  

 
In this study we attempted to reveal the proteomic 
changes which occur via the VraS, GraR, and VraS-GraR 
regulation in the generation of a VISA. We can 
summarize that the Mu50 lineage of VISAs appear to 
down-regulate virulence proteins (SarA and SarA 
homologues) to acquire “beginner” VISA phenotypes. 
This trade-off between bacterial resistance and virulence 
is mainly regulated by VraS. Upon evolvement into VISA 
strains, a different set of proteins responsible for 
vancomycin resistance are up-regulated. This is achieved 
only when both VraS and GraR are present, as GraR 
alone does not account for significant differential protein 
expression attributable to vancomycin resistance. 
However, our present study only revealed altered protein 
expressions that were exhibited in the absence of 
vancomycin induction. Further investigations are being 
carried out to study these strains under vancomycin 
challenge to identify a more comprehensive set of 
proteins responsible for vancomycin stress response. 
This will contribute to a better understanding of bacterial 
protein responses towards vancomycin and also towards 
the identification of new drug targets. 
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