
Malaysian Journal of Public Health Medicine 2016, Special Volume 1: 86-94 

ORIGINAL ARTICLE 
 
STEADY STATE VISUAL EVOKED POTENTIAL BASED BCI AS CONTROL 
METHOD FOR EXOSKELETON: A REVIEW 
 
Norhafizan Ahmad, Raja Ariffin Raja Ghazilla,Muhammad Zikril Hakim MD Azizi 
 
Center for Product Design and Manufacturing University Of Malaya, Malaysia 

 
ABSTRACT 
 
Brain Computer Interfaces (BCI) provide a vast possibility in enabling the brain to communicate directly with the 
computer, hence providing an alternative in controlling the machines without much effort. In fields of 
rehabilitations robotics, the applications of an exoskeletons in assisting a spinal cord injured (SCI) patients were 
growing. Steady state visually evoked potentials (SSVEP) based BCIs that utilizes the human visual reactions to the 
constant flickered stimulus quickly showed its potentials among the BCIs used in rehabilitations devices because of 
its advantages such as a higher immunity to noises and artefacts and also its robustness compared to other BCIs. 
Rehabilitation exoskeletons demands an approach that are more user friendly and the aspects of control scheme and 
mechanical parts that are more focused on assisting the patients in rehabilitations and providing a SCI patients an 
alternatives to explore their surroundings in a more intuitive ways. This paper highlights the current development 
trends in SSVEP based BCIs for rehabilitation exoskeletons and proposed the potential research scopes in the future 
that can improve the effectiveness, and its potential applications in rehabilitations. 
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INTRODUCTION 
 
Brain Computer Interfaces (BCI) provide a vast 
possibilities in enabling the brain to 
communicate directly with the computer, hence 
providing an alternatives in controlling the 
machines without much efforts. The BCIs relies 
on the concept that every mental states and 
activities will generates a different kind of 
bioelectrical signals that can be acquired by the 
electrodes sensors, in both invasive or non-
invasive methods, and can be used to control a 
devices according to users 
electroencephalography (EEG) signal detections. 

 
Invasive EEG methods require surgery that will 
implant the electrode directly in the skull or 
even the brain itself. Even though this method 
can be more effective and accurate, provide a 
higher signal quality and can precisely localize 
the brain EEG signals, this methods are 
particularly dangerous and require proper 
surgical procedures. Potential risk of cancer with 
the use of invasive BCI makes the methods not 
very practical in a modern application. With the 
development of current BCI application that 
demands the need for a more practical 
approach, a non-invasive method will certainly 
be a better choice.  Non-invasive EEG methods 
were more practical and does not require any 
surgical procedure prior to the experiments. EEG 
signals were obtained from the bioelectrical 
signals at the scalp rather than the electrodes 
that were implanted directly into the brain area. 

 
Neuropsychological signals obtained from the 
brain activities were known as potentials and 
depends on the locations of the electrodes. This 
potential signals make up the raw EEG data 

obtained by the EEG sensors electrodes.  The 
signals differ in frequency, amplitude, duration 
and locations of the electrodes. Different parts 
of the brains will provide a different type of 
potentials depending on which stimulus being 
applied to the users. Non-invasive BCI methods 
can utilize several approaches of event related 
potentials (ERP) such as visual evoked potential 
(SSVEP), movement related potential (MRP), and 
P300 based potential. 

 
Event related potentials is the measured 
response of the brain EEG signals by non-invasive 
electrodes that resulted from the direct stimulus 
that can be triggered from the cognitive, sensory 
or motor stimulus events. One of the ERP that 
commonly used were steady state visually 
evoked potentials. The SSVEP signals are the 
sinusoidal oscillatory waveform electrical signals 
that have the same frequency as the flickered 
stimulus frequency or its harmonics that can be 
obtained by placing the electrodes at the head 
area where primary visual cortex was located. 

 
SSVEP based BCI had shown some advantages 
over other types of BCI because it relatively 
immune to noises that caused by eye and body 
movements, high accuracy and information 
transfer rate (ITR), and faster detection time 
than other BCI methods such as P300 and another 
ERP such as movement related potentials (MRP). 
Noise immunity were possible by the facts that 
the noise caused by eye and head movements 
were lower in frequencies than the flickered 
stimulus frequency. This also make the filtering 
and detection method for the signals processing 
easier and can give higher signal detections 
accuracy, its great signal-to-noise ratios and 
higher information transfer rate. It can enabled 
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impaired people with disabilities that inhibit 
their motor movements to operate a devices, 
particularly an exoskeletons. 

 
This paper intend to address the current 
development and implementations in an SSVEP 
based BCI that were used in the current research 
projects for exoskeletons.  
 
CURRENT DEVELOPMENTS IN SSVEP BASED BCI 
FOR EXOSKELETONS 
 
In experimental procedure, there had been 
numerous experiment and research that already 
been conducted, but in real time environments 
where the systems need to be mobile and able to 
adapt to the environments, there were few 
solutions available in research. In context of 
exoskeleton, several key factors need to be 
taken into considerations when designing a SSVEP 
based BCIs that can be used optimally for 
exoskeleton applications.  
 
While many SSVEP based BCI had been applied to 
numerous applications in previous research and 
had proven to control many robotics devices such 
as robotic hands, prosthesis, humanoid robots 
and motorized wheelchair, not many SSVEP 
based BCIs that can be optimally applied to an 
exoskeletons, particularly a lower limb 
exoskeleton.  Many researchers already ventured 
the possibilities of SSVEP based BCIs for 
exoskeletons that works with offline procedures. 
Some of that successfully demonstrated a 
methods that works perfectly with almost 100% 
accuracy such as methods demonstrated by 
Kwaket al.1 and McDaid2, both with a lower limb 
exoskeletons.  
 
Gancet et al.3 had presented a MINDWALKER as 
shown in Figure 1 and Figure 2, an EC funded 
exoskeletons projects that coordinated by Space 
Applications Services that aim at the 
development of novel Brain Neural Computer 
Interfaces (BNCI) that usea non-invasive BCIs 

approach as its main strategy and Spinal Cord 
Injured (SCI) patients as target users. 
Interestingly, MINDWALKER expressed their 
opinions on how Virtual Reality (VR) technologies 
integrations with the rehabilitation process that 
can prepare the patients in a safe and fully 
controlled environments before using the 
assistive robots in their daily life. They also 
admit the potential of SSVEP or P300 based BCIs 
that does not require intensive training but they 
also stated that this methods may not always 
properly fit the requirements of specific 
applications. They opted for a more detail 
approach where they expect the motor cortex. 

 
EEG signal can be exploited and translated to 
generate real time legs kinematics angles that 
corresponds to the walking pattern and pace as 
imagined by the users. 
 
 
Sakurada et al.4 had demonstrated a BMI-based 
Occupational Therapy Suit (BOTAS) as shown in 
Figure 3that utilizes an asynchronous control for 
upper hand exoskeletons using SSVEP based BCI. 
This hybrid BCI based systems incorporates a set 
of pre-recorded movements that can be trigger 
by the P300 and SSVEP signals. Sakurada et al.4 
suggested that the use of robot assisted 
rehabilitation such as exoskeletons can be 

 

Figure 2 - Preliminary protocol for MINDWALKER using SSVEP 
in recordings in the occipital cortex. In the left screen the 
green button flickers at 5Hz, on the right screen the red 
button flickers at 10Hz.  

. 

 

 

Figure 1 - The Virtual Reality Training Environments (VRTE) 
hardware setup for MINDWALKERs – left: care-giver training 
authoring and monitoring. Right: patient training 
environment. The upper body of this virtual human 
representation is controlled via the tracking data, and its 
legs are actuated by the Virtual Exoskeleton’s controller, 
using BCI inputs. 

 

Figure 3 -  The figure indicates the whole flow of BCI system 
for BOTAS where the red arrow shows the flow of SSVEP 
based BCI system and blue arrows shows the combined BCI 
system based on both P300 and SSVEP. 
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improved if the control scheme and the systems 
supported goal directed actions involving 
multiple body parts such as whole arm. 
Optimally for rehabilitation, user friendly BCI 
systems should using as few electrodes as 
possible without affecting the detection of EEG 
signals and its classification accuracy as stated 
by Luo and Sullivan5as shown in Figure 4. This 
also helps the users to use the systems without 
considerable times for preparations, which is 
quite important in rehabilitations. Sukaradaet 
al.4 also stated that the locations of the LED 

stimulus used in their systems affects the SSVEP 
responses. 
 
McDaid et al.2 presented an interesting approach 
that had two different training protocols. One of 
it was Initiated intent where the users only 
triggers the task without the needs to continually 
focusing on the task. This means the processing 
algorithm can proceed to another command once 
the last command were executed. Another 
training protocol were Continuous intent where 
the user has to concentrate on executing the 
command continuously, otherwise the task will 
be stopped. This was useful for a command that 
need precise or individual control, where the 
motions can be stopped immediately which was 
good for safety and control. Continuous 
concentration that were needed can help the 
users in rehabilitations. Because of this 
approach, there was a notable delay to recognize 
the users intent hence inhibit the systems 
effectiveness in real time applications. They 
were convinced that this approach using SSVEP 
were better than motor imagination approach 
that have lower accuracy and effectiveness.  
 
Kwaket al.1also presented an interesting 
approach to SSVEP based BCIsas shown in Figure 
6. With their lower limb exoskeletons, they used 
LED systems rather than a monitor because it can 
be easily mounted in front of their exoskeletons. 
The exoskeletons from REX Bionics were used 
and it have a pre-programmed motions such as 
walking, turning, standing and sitting and can 
balance itself. They only demonstrated their 

offline SSVEP based BCIsystems using only the 
SSVEP classification. Nonetheless, their systems 
were effective and robust enough with high 
accuracy and can be easily be integrated into 
any exoskeletons. 
 

Bevilacqua et al.6as shown in Figure 7had 
proposed and developed a novel BCI-SSVEP based 
approach for control of walking in Virtual 
Environment using a Convolutional Neural 
Network. This approach integrates the SSVEP 
based BCIs method with a virtual reality (VR) 
environments module with a head mounted 
display (HMD) to facilitate the users perception 
of the systems. The SSVEP stimulator were 
included in the VR environments and users did 

Figure 4 -  Dual training protocol for SSVEP based robotic 
exoskeletons – left: schematics of flickering panel where 12 
green flickering LEDs with different frequencies for 12 
possible commands. Right: Neurorehabilitation exoskeleton 
setup includes the EEg cap, lower limb knee joint 
exoskeletons, a flickering panel and user interface. 

 

 

. 

 

Figure 5 -  Left: Components of BMI SSVEP based exoskeleton 
systems.  Right: visual stimulation unit with intuitive 
interface: walking (9Hz), turning left (11Hz), standing 
(13Hz), turning right (15Hz) and sitting (17Hz). 

 

. 

 

 
 
Figure 6 -  The block diagram for proposed BCIs SSVEP 
based approach using virtual reality. 

Figure 7 - The Virtual Environment scenario and the 
flickering symbols (rectangles) used for eliciting the 
SSVEP response. The flickering frequencies are indicated: 
12 Hz, 15 Hz and 20 Hz. 

 

 

. 
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not have to wear the exoskeletons physically at 
all. This approach provides users with a sense of 
confidence of their safety. While the neural 
network approach itself was accurate and 
effective, however, they stated that their VR 
approach rely on a reduced number of control 
commands and the selection needs to be reliable 
and rapid in order to achieve usability of the 
interface itself. 
 
 
 
 
 

POTENTIAL FUTURE RESEARCH SCOPES 
 
In general, SSVEP can be assume as the 
continuous evoked response obtained from the 
visual cortex of the brains that resulted from the 
continuous constant frequency stimulus to the 
eye retina. When the subjects gazed the 
flickered targets, the different flickered stimulus 
frequencies will yield a different evoked EEG 
signals from the primary visual cortex that can 
be distinguish based on the matching 
fundamental stimulus frequency or its harmonic 
frequencies.  

 

STIMULATOR  

Because of the nature of SSVEP method that 
requires a source of constant flickered stimulus, 
many variety of methods to generate the 
stimulus had been proposed by many 

researchers. In the early days, cathode ray tube 
(CRT) monitor were used. Now, among the most 
commonly used stimulus generator were Light 
emitting diode (LED) systems and liquid crystal 
displays (LCD) and LED monitorsas shown in 
Table 1. According to Wu et al.23, different type 
of stimulator selections will give a different 

Table 1 - Characteristics of SSVEP Study Based On Stimulator 

Stimulator Study EEG Devices Actuate Devices Filter Feature 
Extraction 

Classifier 

LED Monitor Bastos et al.7 32 channel Biosemi 
EEG systems 

Motorized 
wheelchair 

 

Not specified Power Spectral 
Density 

Decision Tree 
methods 

LCD Monitor 

Gergondet et 
al.8 

8 channel g.Tec 
EEG systems 

Humanoid robots 

Bandpass filter, 
notch filter, 
Laplacian 

derivations 

Fast Fourier 
Transform with 

Liner 
Discriminant 

Analysis 

Majority weight 
Analysis 

 
Liu et al.9 

16 Channel EMOTIV, 
64 channel g.Tec 

EEG 
Button Selector Not specified 

Canonical 
correlation 

analysis (CCA) 
Not specified 

 
Chang et al.10 

32 channel 
Quickamp 

Not specified Bandpass filter, 
Match filter 

detector 
Absolute value 
match filter 

 Dasgupta et 
al.11 

multichannel g.Tec 
EEG systems 

Robots 
Welch 

periodogram 
Support Vector 

Machines 
Support Vector 

Machines 

 
Hasan et al.12 

3 channel BIOPAC 
MP 36 

Command 
selector 

Not specified 
Fast Fourier 
Transform 

Not specified 

 
Meattini et 
al.13 

16 channel Emotiv 
EPOC 

Robotic hands 
butterworth 

filters (0-20Hz) 

Fast Fourier 
Transform, CSP 

filter 

Support Vector 
Machines 

 
Chen et al.14 Not specified Not specified Not specified 

Fast Fourier 
Transform, 

Bayesian decision 
model 

 
McDaid et al.2 

2 channel g.Tec 
EEG systems 

Lower Limb 
Exoskeletons 

Bandpass filter, 
notch filter 

Adjacent Narrow 
band filter 
algorithm 

Not specified 

 
Guangyu et 
al.15 

64 channel 
SynAmpsNeuroscan 

None 
Canonical 
correlation 

analysis (CCA) 
Not specified Bandpass filter, 

LED System Guneysu  et 
al.16 

16 channel Emotiv 
EPOC 

Humanoid robots Not specified 
Fast Fourier 
Transform  

Not specified 

 
Byczuk et al.17 Not specified Not specified Comb filters 

Fast Fourier 
Transform 

Not specified 

 
Ortner et al.18 

8 channel g.Tec 
EEG systems 

Robot 
Bandpass filter, 

Minimum 
energy 

Fast Fourier 
Transform with 

LCA 

Majority weight 
Analysis 

 
Taha et al.19 Not specified Robotic hands Not specified 

Fast Fourier 
Transform 

Frequency peaks 
selector 

CRT Monitor 
Allison et al.20 

64 channel Electro 
Cap Int. 

Not specified 
Auto 

Regression 
Not specified Not specified 

 
Cheng et al.21 Not specified Bandpass filter, 

Fast Fourier 
Transform 

Not specified Bandpass filter, 

 

Wei et al.22 

256 channel Bio-
Semi ActiveTwo 
Systems 

 

Notch filtering 
Differential 

CCA 
Not specified Notch filtering 



Malaysian Journal of Public Health Medicine 2016, Special Volume 1: 86-94 

SSVEPs because it strongly related to the 
frequency spectrum differences of the flickers. 
By far, the LED systems consist of high 
luminescence LED, particularly a white colored 
ones, have the most simplest frequency 
spectrum that only consist of the fundamental 
stimulus frequency and its harmonics. Because of 
this, the SSVEP evoked by the LED flicker was 
stronger than LCD and CRT flicker while SSVEP 
that evoked by LCD displays and CRT monitors 
was quite similar.The fundamental frequencies 
amplitude in the averaged SSVEP evoked by LED 
was significantly larger than that evoked CRT or 
LCD flickers in all stimulus frequency23  even 
though it was not same for the second harmonics 
frequency where the difference was not 
significant among three stimulators in high 
frequencyas shown in Figure 8. 

 
LED systems have an important parameters that 
was the existence of rising and descending edge 
time which normally occur for several moments 
and caused the harmonics in the frequency 
spectrum. This will cause a problems if the rising 
and descending edge of the flickers were long 
enough to affect the harmonics large enough.  
 
Hence, LED with shorter rising and descending 
edge time was better as it can help boost the 
fundamental components of the SSVEP evoked by 
this stimulator. 
 
For the LCD monitors, the luminance or the 
photometric measure of the luminous intensity 
per unit area of light travelling in a given 
direction and the refresh rate of the monitors 
really does affect the SSVEP performances. LCD 
have higher luminance that CRT monitors, hence 
it will not be affected by the refresh rates or 
other high frequency components. But LCD does 
have longer rising and descending edge of  

flickers. These low frequency components of the 
flickers does gave some problems to the accuracy 
of decoding the SSVEPs.CRT monitors, apart from 
having lower luminance that LCD, it also can be 
affected by the refresh rates of the monitors. 
Hence, the evoked SSVEP will also contain 
refreshing frequencies when operating in low 
frequency bands. This will have a huge effects on 
the overall decoding accuracy ofthe systems. 
 
When building low complexity SSVEP based BCIs, 
the LCD and CRT flickers are better than LED 
flickers because it doesn’t need much processing 
power and stimulator. Computer systems can 
provide both computing power and stimulator 
systems simultaneously. In medium complexity 
SSVEP based BCIs where the  choices was more 
than 10 types, the processing power and 
stimulator can still be operated by a single unit 
of computers. Hence using LED with all the 
equipment’s needed was not an optimal choice. 
While high complexity SSVEP based BCIs system 
does need a low rising and ascending time to 
reduce the harmonics components of the 
frequency spectrum, LED can be a better 
stimulator that can provide a higher fundamental 
frequency and does not affected by the 
harmonics too much. 
 
Even though SSVEP based exoskeletons does not 
need many inputs like a QWERTY keyboard inputs 
or keypad inputs, it still need a stimulator that 
will always be in the user field of view and did 
not inhibit their movements. Wearable and 
mobile SSVEP approach for exoskeletons were 
more appropriates than a monitor based 
stimulator method. Hence LED systems will works 
better for SSVEP based BCIs as shown by some 
researchers such as Kwaket al.1, McDaid2 and 
Sakurada4. 
 
Optimization of the SSVEP accuracy and 
effectiveness can be achieved with several 
methods. The distribution and arrangements of 
the flickered stimulus can improve the EEG 
signals and directly boost the SSVEP 
performances. Frequency pairs and inter sources 
distances also plays an important parts in the 
detection accuracy of the systems. As concluded 
by Resalatet al.24 stated that when designing a 
bi-command BCI system, the frequency pair of 
10-15 Hz were more suitable among the other 
pairs with inter-sources distance of 14 cm or 24 
cm where the sweep length was 0.5 second. 
They also concluded that when designing a multi-
command BCI system requires the volume of the 
stimulus area to be as small as possible; 
therefore, inter-sources distance of 14 cm could 
be more practical based on their findings. 
 
The colour of the flickered stimulator also plays 
an important role in effective implementation of 
SSVEP. Takanoet al.25 stated that blue/green 
flicker can improved the EEG signals 

 
Figure 8 - Signal waveforms and frequency spectra of the 
flickers. The stimulus frequency was 10.8 Hz. The left 
column shows the waveform in two cycles of the three 
flickers, and the right column is the frequency spectrum. 
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classification accuracy and effectiveness of P300 
based BCIs when compared to grey/white 
stimulus. Because of the P300 concept that 
almost similar with SSVEP based BCIs, the 
concept should works too in theory even though 
future research were needed to validate this 
statements. Coloured flickered stimulus methods 
were better implemented in real time 
environments because of its higher visibility and 
will be easier to be detected by the users. 
Future research works were needed to find the 
effect of parameters such as stimulus distances 
and viewing angles in the SSVEP signal 
performances. The research on the effect of 
stimulator parameters in the SSVEP performance 
such as colours, shapes, orientations, distances 
and locations, flicker intensity and newer type of 
approach such as stimulus in Virtual 
Environments (VR) need to be given more 
attentions in future research. 

 
SIGNAL ACQUISITIONS AND PROCESSING.  
When dealing with the signal processing parts of 
the SSVEP, some factors were more important 
than others that is the processing speed and 
detection accuracy. Many researchers had done 
numerous methods to filter the raw SSVEP 
signals, do feature extractions and then classify 
the SSVEP according to the certain class and 
assigns appropriate commands based on the 
analysis. Some of the commonly used methods 
were canonical correlation analysis (CCA)9,15, 
differential CCA22, Linear Discriminant Analysis18, 
and Fast Fourier transform14,17,19,21,26. Because of 
this numerous methods and its effectiveness that 
depends on the specific application, this paper 
will not focus on the difference and advantages 
of each systems, rather more on the main 
challenges that signal processing needs to be 
solved when dealing with SSVEP based BCIs for 
robotics control.  
 
Signals processing for SSVEP consist of several 
common stages such as signal filtering, feature 
detection and extraction and classifier. Many 
researcher already try and compare different 
types of filters to enhance SSVEP performances 
such as comb filter17,  Detection of idle mode, a 
duration which a user did not gaze at any 
stimulus can helps to increase the detection 
accuracy of the offline systems as suggested by 
Ren et al.27 that use a method called Principal 
Component Complexity. This method can be used 
to reduce a false positive detections hence 
increase the effectiveness of detections. 
 
Feature extractions techniques also varies 
depends on the windows lengths, visual 
stimulator, and number of subjects. Tello et al.28 
compares 7 different feature extractions 
techniques such as Power Spectral Density (PSD), 
Spectral F-Test, Empirical Mode Decomposition 
(EMD), Minimum energy Combination (MCE), 
Canonical Correlation Analysis (CCA), Least 

Absolute Shrinkage and Selection Operator 
(LASSO), and Multivariate Synchronization Index 
(MSI) and concludes that the technique based on 
MSI produced highest success rates in both types 
of visual stimulator (LCD and LED). The accuracy 
and ITR were more significant when the windows 
sizes were increased from 1, 2, 4, 5 and 10 
seconds. 
 
For rehabilitations exoskeletons or any 
rehabilitation devices, the delay must be 
acceptable so that any user intents will be 
properly conveyed to the exoskeleton motions. A 
stop command also needed as a failsafe button 
to prevent injury to the users. Because of most 
of the exoskeletons already have its own set of 
motions that can be triggered by users intents 
such as SSVEP, a limitations to the chain of 
commands need to be done. For examples, if the 
users were in sitting positions, the next logical 
commands were only standing command. There 
can never be any situation where the user can 
accidentally activate the walking command while 
the exoskeletons itself was still in sitting 
positions. SSVEP control scheme also need to 
make sure of this situations. The SSVEP stimulus 
and its control scheme need to make sure that 
only a set of allowed commands or SSVEP 
stimulus that can exist and be executed at a 
single time. 

COMPLEXITY OF THE SYSTEMS  

Most of the SSVEP based BCIs systems use a 
computers to do the processing works and to 
provide SSVEP stimulus to the users. This was 
acceptable if the SSVEP systems were used to 
operate a wheelchair or a spelling and input 
systems. But for exoskeletons, the systems need 
to be simple and small enough to be mounted on 
the exoskeletons unless the exoskeletons can 
operate wirelessly. This demands for the need 
for a dedicated and more compact hardware for 
BCIs.  Yu et al.29had proposed a hardware 
architecture using hierarchical systolic arrays to 
reconstruct the correlation neural network in 
real time. They concluded that based on the 
results obtained, the method of a dedicated 
hardware for brain machine interfaces provide as 
much as three orders of magnitude faster that 
the software approach using desktop computer. 
This proves the possibilities of a compact and 
optimal SSVEP based BCIS systems. The ideal 
ideas of a single, central dedicated processing 
unit that need to be able to handle the SSVEP 
acquisition systems, signal processing and the 
control scheme based on the users SSVEP 
simultaneously will leads to a future novel 
rehabilitation exoskeleton devices.  

 
This ideas were based on the concepts that the 
ideal SSVEP BCIs systems need to have a minimal 
computational and communication delays, wide 
system and devices integrations flexibility, a 
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robust SSVEP signals processing and acquisition 
methods with minimal or no training time that 
can adapt to the users and the surroundings, and 
more importantly will assist and augments the 
rehabilitation process of users normal gait 
pattern or motions. Hybrid systems using SSVEP 
based BCIs and another methods can also proves 
to be useful in making the BCIS faster and more 
reliable in real time.  
 
Tomita30 proposed a bimodal near infrared 
spectroscopy (NIRS) and EEG approach where 
SSVEP were measured using one channel of NIRS 
and one channel of EEG acquisitions method to 
optimize the detection accuracy. NIRS signals 
were used to detect whether the users in an 
active or idle mode. Then SSVEP EEG obtained 
were used to detect one of the commands or an 
idle state also. Combining another BCIs method 
can also improve the detection accuracy by 
limiting the false positive detections.  
 
SYSTEM FEEDBACKS AND ADAPTABILITY IN 
REAL TIME 
 
According to Pons31 exoskeleton are wearable 
robots that exhibit a close cognitive and physical 
interaction with the human user because it 
operates alongside human limbs. Because of the 
nature of rehabilitation exoskeletons operations 
that need to assist in user rehabilitation process 
and optimally augment the users physical gaits in 
real time, the control scheme need to include 
mutual feedbacks with the users. Pons31 also 
expressed his opinions on the brain controlled 
exoskeletons and divided the demonstrations of 
Brain–machine interface into 2 larger groups, 
either continuous control of positions or velocity 
or discrete control of more complex information 
such as intended targets, actions and onset of 
movements. While a single and multiple unit 
recording interfaces were only attainable 
through invasive implantable microarray 
electrodes and poses a numbers of limitation 
even though it provides a large data throughput, 
it makes the surface and noninvasive based BMIs 
a much viable and practical methods.  
 
In terms of system feedback in real time for 
SSVEP BCIs based exoskeletons, visual feedback 
of users surrounding were important. While most 
of the current research in SSVEP based BCIs 
employed the usage of LED systems or LCD 
monitors, the stimulators used were mostly 
fixated in front of the users. If the exoskeletons 
need to operate in real time, this will not be the 
optimal approach. While the users may looks at 
the stimulator and the surroundings freely, the 
stimulator needs to be in the user field of view 
constantly. This can be achieve by a head 
mounted display (HMD) like the one proposed by 
Bevilacquaet al.6. 
 
 

CONCLUSION 

A successful SSVEP based BCIs for rehabilitation 
exoskeletons need to emphasize several key 
aspects such as able to optimally conveys the 
users gazing actions according to their 
intentions. The delays between the time of users 
action and the actual exoskeletons motions need 
to be as minimal as possible so that the systems 
can works seamlessly in real time environments. 
A more advance approach to the users 
perception need to be used such as Virtual 
Environments (VR)  or a head mounted displays 
(HMD) systems that can adapt to the users visual 
field and the surrounding environments. The 
milestone in the SSVEP based exoskeletons will 
be the clinical evaluations of the systems that 
can successfully assist the SCI patients in real 
time environments without the hesitations of a 
malfunction or limited functions of exoskeleton 
control scheme. 
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