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ABSTRACT  

 
It was suggested by most researchers that train drivers’ workload and alertness levels attribute to train 
accidents. The main objective of this study is to determine the significant patterns of mental workload and 
alertness levels of train drivers with respect to the conditions. The data are collected from simulation 
experiments on 15 professional train drivers. The simulation experiments are performed under three driving 
conditions (i.e. daytime, rainy daytime and rainy night) using a train driving simulator set. Electroencephalogram 
(EEG) signals are collected from six significant points on the body of the subjects. It is found that the mental 
workload of the train drivers tends to be high during rainy night driving condition and sleepiness occurs which is 
indicative of low vigilance. The beta amplitude increases under rainy night driving condition which may be 
attributed to viewing difficulties while driving in the dark. The results reveal that there is a significant different 
between each session (p = 0.042) especially with the pattern for rainy night driving. It is also observed that there 
is lower mental workload among the train drivers, which indicates that the train drivers are detached from their 
work.  
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INTRODUCTION 

 
Accidents and system failure still occur due to 
faulty interactions between humans and 
machines. There are several contributors to 
accidents such as poor track conditions, faulty 
machinery and human error. According to Jap 
et al.1, almost 75% of all train accidents are 
attributed to human error. Many solutions have 
been implemented over the years such as 
improving railway infrastructure and upgrading 
systems. The ergonomics approach has received 
much attention in recent years since human 
skills and capabilities while handling train 
devices and machines play a vital role in the 
prevention of catastrophic incidents. Various 
fields including human working environment in 
industries have improved after the findings of 
ergonomics studies are used as a guidelines 2, 3. 
It is deemed necessary that a study focused on 
the working conditions of train drivers is 
carried out in order to investigate the scenarios 
and problems which will lead towards incidents 
and accidents. 

In general, drivers of transportation vehicles 
are exposed to various forms of condition and 
environment while driving. For example, the 
weather may change unexpectedly. However, 
the drivers need to go on with their journey 
regardless of its distance and environmental 
conditions. Conflicting weather such as rain 
complicates the work of drivers which can 
cause accidents due to varying road conditions. 
According to Kilpeläinen et al.4,  rain is one of 
the adverse weather conditions which can be 
considered as a cause of an elevated risk of 
traffic accidents in northern Europe and 
northern America. It is therefore necessary for 
drivers to acquire simple strategies to tackle 
the demands imposed while driving in adverse 
environments. According to Lee and Triggs5, an 
increase in environmental complexity during 
driving affects peripheral stimuli detection. It 
has been shown that an increase in brain waves 
is correlated with an increase in task loads 6, 7. 
 

 
Furthermore, night driving is an unfavourable 
driving condition for certain groups of people. 

This may be due to visual inadequacy as well as 
human factors such as sleepiness and 
fatigue.Several studies concluded that train 
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drivers are especially fatigued during night 
shifts 8, 9, 10. Austin and Drummond10 found that 
drivers tend to fall asleep while driving at 
night. This is clearly dangerous not only to the 
drivers but also passengers. 
 
It can be seen that the mental workload of 
drivers is closely linked with their alertness 
levels. Changes in mental workload result in 
changes in alertness levels 11. In land 
transportation, drivers with high mental 
workloads suffer from reduced alertness, 
diverted attention and inadequate time for 
information processing12. Alertness can be 
defined as the mental state of aroused 
awareness13 and thus decreased alertness is a 
state of reduced awareness. Alertness and 
constant attention to the environment are 
related to a number of primary brain processes 
and are linked with psychological constructs. 
 
There are several contribution factors which 
affect the alertness levels of drivers. Prolonged 
work duration may result in boredom among 
train drivers14. An increase in driving duration is 
a significant factor which decreases the 
alertness levels of drivers11. There is nothing 
more frustrating than sleep deprivation and 
thus the amount of sleep affects a worker’s 

alertness levels. Impaired alertness may occur 
due to sleep debts which consequently affect a 
person’s reaction time, concentration, 
judgement and decision-making abilities14.  
Nocturnal driving also affects the alertness of 
drivers. It is known that there are two 
particular times which will cause physiological 
decrement in alertness levels (i.e. afternoon 
and night) 11. It has been reported in a number 
of studies that the alertness levels of 
professional drivers decrease at night, which 
will jeopardize their work performance 9, 15. 
 
Owing to the importance of understanding the 
relationship between mental workload, 
alertness levels and driving conditions, the 
main objective of this study is to conduct an 
empirical investigation which identifies the 
significant patterns of mental workload and 
alertness levels of train drivers with regards to 
different conditions. It is propose that the 
findings presented in this study can be utilized 
to establish efficient work schedules and better 
working environment for the train drivers. 
Thus, a broader sense of ergonomics can be 
applied which ensures a good balance between 
the organization as a whole, its people, 
working practices and technology. 

 
 
METHODS 
 
Participants 
 
A total of 15 participants participated in this 
study and they are all male train drivers with 
aged between 24 and 48 years (mean age: 40 
years). The participants all possess a valid train 
driving licence. None of the participants have a 
history of serious illnesses and are free of 
medications which would otherwise prevent 
compliance to the subject requirements and 
affect the physiological measures. The 
participants read and signed the consent form 
prior to the experiments.  

 
Experimental Apparatus 
 
A modern train driving simulator (Mitsubishi 
Electric Advance, Japan) was used for the 
experiments. A MP150 system (Figure 1) 
equipped with AcqKnowledge® 4.0 software 
was used to monitor and record the brain 
signals, filter the data automatically and 
remove the Electrooculogram (EOG) artefacts 
in the signals. The stretchable electrode cap 
(CAP100C) assists in securing 19 embedded tin 
electrodes to each participant’s head. A video 
camera was used to record the activities 
throughout the experiments and affirm the 
data obtained at a particular time. 

 

 
Figure 1: Photograph of the MP150 system 
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Experimental Setup 
 
The experiments were carried out at Keretapi 
Tanah MelayuBerhad (KTMB) which they 
provided a room specifically for the 
experiments, which consists of a computer-
based train driving simulator (Mitsubishi 
Electric Advance, Japan). The simulation route 
displayed on the screen is the exact train route 

in Malaysia and shows the real environment 
which the train is driving in since the software 
was developed based on real-life scenarios. The 
train driver interacts with the simulator using 
the keyboard, mouse and buttons on the 
simulator hardware including a multi-functional 
speed hand-operated control. The top view of 
the experimental setup is shown in Figure 2.  

 

Figure 2: Top view of experimental setup 

 
Experimental Procedure  
 
The initial procedure before the simulation 
experiments involves collecting the 
participants’ demographic data. Three driving 
conditions were chosen based on a survey 
carried out previously from part of this study 
regarding the most critical train driving 
conditions (Daytime; Rainy day; Rainy night).  
The participants were instructed to complete 
60 minutes of monotonous train driving 
sessions. A repeated measurement design was 
used with a 5-minute break after each session. 
The participants were given a few minutes to 

familiarize with the controls and experimental 
setup used to perform the train driving task.  
During the monotonous driving sessions, the 
electroencephalogram (EEG) and 
electrooculogram (EOG) data were collected 
using the MP150 system and BIOPAC set. The 
EEG signals were acquired from six locations of 
electrodes (i.e. FZ, PZ, O1, O2, P3 and P4) based 
on the international 10–20 montage [16] with 
an electronically linked earlobe reference, as 
shown in Figure 3. EOG recordings were 
collected by placing the electrodes above and 
below the eye on the right side of the 
participant’s face, as shown in Figure 4.
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Analysis 
 There are two types of analysis carried 
out in this study, namely, signal and statistical 
analysis. AcqKnowledgesoftware was used for 
signal analysis. The first 120-second interval of 
the physiological signal from the beginning of 
each period was excluded from the analysis in 
order to eliminate drifts. The remaining 
duration was then segmented into six equal 
time intervals in order to observe the variations 
in EEG activity during the driving sessions.  
Since EEG data contain noise and eye 
movement artefacts17, EOG data were used to 
remove the noise and eye movement artefact 
as a measure of the blink interval. Fast Fourier 
transform (FFT) analysis was used to extract 
and estimate for each time interval as the data 
were smoothed using 100% Hanning window. 
The alpha (8-12Hz) and beta (13 – 30 Hz) 
frequency bands were extracted for each 
driving condition as well as participants. It shall 
be noted that this study focuses only on the 
selected measurement channels (which means 
that the frequency was calculated for all 
participants and the mean was determined. 
Statistical analysis was then carried out to 
determine the output of the data derived from 
the EEG software analysis. Friedman Test was 
used to determine if there is a significant 
difference between the alpha and beta power 
data between the three driving conditions. 
 
RESULTS 
 
Demographic Data 
A total of 15 male train drivers participated in 
the experiments. The participants are all 

heal
thy 
wit
hou

t a history of serious illnesses. The mean age of 
the subjects is 40 ± 6.9 years. The number of 
years of working experience varies among train 
drivers, with a mean value of 14 ± 6.1 years.  
 
EEG Mean Alpha Power:  Comparison of Mean 
Alpha Power between Three Driving 
Conditions 
 
One of the objectives of this study is to 
determine if there is a significant difference in 
the mental workload of train drivers between 
driving conditions. The EEG data is analysed 
with regards to the alpha power since the alpha 
power is associated with mental workload. It is 
found that driving cndition has a significant 
effect on the EEG mean alpha power (8-12 Hz). 
The mean value for each subject is extracted 
from the raw EEG data and plotted into a 
graph. The variation of mean alpha power with 
respect to time for channel FZPZ for three 
driving conditions is shown in Figure 5,  and it 
can be observed that the mean alpha power 
initially decreases initially, followed by an 
increase towards the end of the driving session 
for daytime driving condition. The variation of 
mean alpha power is less apparent for rainy day 
condition, whereas the mean alpha power first 
increases from the first to second time 
interval, followed by a decrease between the 
second and third time intervals while driving in 
rainy night condition. 

 
 

Figure 3: EEG electrode placement 

points 

 

Figure 4: Electrode placement 

above and below the right eye for 

EOG recording 
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Figure 5: Variation of mean alpha power with respect to time for channel FZPZ for three driving 

conditions 
 

Comparison is also made on the mean alpha 
power between three driving conditions (Table 
4). It can be observed that the difference in 
mean alpha power for signal FZPZ is statistically 
significant, where χ2 (2) = 6.333, P = 0.042. This 

indicates that the mental workload of the train 
drivers is highly dependent on the driving 
condition, especially when driving in rainy night 
condition.  

 
Table 4: Difference in mean alpha power between three driving conditions for each measurement 

channel obtained from Friedman Test 

Measurement Channel Chi-Square Asymp. Sig. 

FZPZ 6.333 0.042* 
O1O2 3.000 0.233 
P3P4 4.333 0.115 

  
EEG Mean Beta Power: Comparison of Mean 
Beta Power between Three Driving Sessions 
  
The beta power of the EEG data is then 
analyzed since it is associated with alertness 
levels. The mean beta power is extracted from 
the raw EEG data and plotted into a graph. The 
variation of mean beta power with respect to 
time for channel P3P4 for three driving 
conditions is shown in Figure 6, and it can be 
observed that there is a pronounced increase 
from the first to third time interval, followed 
by a decrease between the third and fourth 
time intervals for daytime driving condition. 

The mean beta power signal then increases 
again towards the end of the driving session. 
The trend differs significantly however for rainy 
day driving condition, whereby the signal first 
decreases between the first and second time 
intervals and remains constant between the 
second and fourth time intervals. The mean 
beta power then increases towards the end of 
the driving session. In contrast, the mean beta 
power signal is rather unstable for the rainy 
night driving condition, whereby the signal 
fluctuates throughout the driving session and 
the value is highest at the end compared to 
others. 

 



Malaysian Journal of Public Health Medicine 2016, Special Volume 1: 115-123 
___________________________________________________________________________________________________ 

 
Figure 6: Variation of mean beta power with respect to time for channel P3P4 for three driving 

conditions 
 
The mean beta power signals for the three 
driving conditions are compared (Table 5). It 
can be seen that the difference in mean beta 
power signal for channel P3P4 is statistically 
significant, where χ2 (2) = 6.333, P = 0.042. This 
indicates that the mean beta power signal for 

this channel strongly depends on driving 
session. It is apparent from result that only 
channel P3P4 shows a significant difference 
between driving conditions. This reflects that 
the alertness levels of the train drivers vary 
depending on the driving conditions. 

 
Table 5: Difference in mean beta power between three driving conditions obtained from Friedman Test 

 

Measurement Channel Chi-Square Asymp. Sig. 

FZPZ 4.333 0.115 
O1O2 2.333 0.311 
P3P4 6.333 0.042* 

 
DISCUSSIONS 
 
Mental Workload of Train Drivers 
 
Comparison has been made with regards to the 
three driving conditions and it is found that the 
difference in mean alpha power for channel 
FZPZ  is significant (p = 0.042), which indicates 
that the alpha activity differs depending on the 
type of mental workload imposed on the train 
driver.  This observation agrees with the results 
of Ryu and Myung 18, whereby the value of 
alpha varies in accordance with task difficulty 
levels. The train drivers tend to feel calmer 
towards the end of Session 1 (daytime driving 
condition), which explains the increase in alpha 
activity.  It is expected that the train drivers 
will be more relaxed towards the end of the 
driving session since they have reached their 

destination. However, the results contradict 
the findings of Myrteket al.19, in which that the 
workload component is higher at the ‘start’ and 
‘braking’ modes. The different may because 
they used a real driving situation in their 
experiments. 
  
Alertness Patterns of Train Drivers 
 
The beta power activity is analysed to examine 
the alertness patterns during train driving 
experiments. A significant difference in beta 
activity is observed for channel P3P4. It can be 
seen from Figure 6 that the beta activity is 
rather unstable for Session 3 (rainy night 
driving condition) compared to the other 
driving sessions. Since channel P3P4 contributes 
to perception and differentiation20, the train 
drivers may be experiencing confusion in 
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perceiving their surroundings while driving in 
rainy night driving condition, which 
consequently affects their alertness levels. The 
result shows variations of beta activity which 
has been associated with instability of the 
drivers’ condition and performance 21, 22. In 
addition, a reduction in beta waves is a clear 
sign of weariness and sleepiness among people 
23.  
 
Effects of driving conditions on mental 
workload and alertness 
 
It is evident from the EEG results that the alpha 
power signal is most significant for Session 3 
(rainy night driving condition). The mean alpha 
power decreases between the second and third 
time intervals for all measurement channels in 
Session 3, which indicates that the mental 
workload of the train drivers increases after six 
minutes of driving. Drivers with high mental 
workloads suffer from reduced alertness, 
diverted attention and inadequate time for 
information processing 12. 
 
Night driving has been confirmed to induce 
sleepiness 11, 24. In this study, it is found that 
the percentage difference between daytime 
and rainy night driving is 37%, even at the 
initial period of the experiments. A low mental 
workload can cause boredom which will divert 
the driver’s attention to other things 14, 25. It is 
extremely dangerous if the train driver feels 
drowsy in the actual working environment such 
that the train driver dozes off while driving. It 
is therefore necessary for the management to 
devise an appropriate work schedule to enable 
train drivers arrange their sleeping hours 
before checking in for work. According to Budi 
et al. 26, there is a distinct relationship 
between railway accidents and locomotive 
crew while they are on duty. The availability of 
an efficient work schedule will enhance the 
motivation of train drivers to perform their 
tasks, which will enable them to provide 
excellent service for the organization. An 
efficient work schedule is vital to increase the 
motivation and satisfaction of workers 27. 
 
It shall be highlighted that safety factors need 
to be taken into consideration and therefore 

measures can be taken to overcome the pitfalls 
of rainy night driving. The results in this study 
indicate that the train drivers may be 
experiencing viewing difficulties while driving 
in rainy night condition and this problem can be 
alleviated by making modifications in the train 
design. For example, an infrared camera can be 
installed in the front of the cabin in order to 
improve visibility, particularly at blind spots. In 
addition, providing sufficiently bright lighting 
in front of the cab will enable train drivers to 
view the route from at least 1 mile ahead. This 
in turn, will help train drivers are able to 
address potential problems or dangers quickly, 
especially during night shifts and rainy days. 
According to Barney et al. 28, the braking 
distance of a train depends on the speed of the 
train when the brakes are applied. Thus, the 
train drivers will be able to react quickly by 
braking the train if they are able to detect 
potential dangers ahead.  
 
CONCLUSION 
 
The mental workload and alertness levels of 15 
professional train drivers have been 
investigated by simulation experiments in this 
study. In general, it can be concluded that 
there are significant patterns for mental 
workload and alertness levels of train drivers 
driving in rainy night condition. The mental 
workload of the train drivers increases by 37% 
in rainy night driving condition relative to 
daytime driving condition. The results show 
that the mental workload of the train drivers 
increases after six minutes of driving in rainy 
night condition. In addition, the results show 
that the train drivers may be having viewing 
difficulties while driving in rainy night 
condition. It is therefore crucial for train 
drivers to be more alert while driving in such 
conditions as it is dangerous and risky in terms 
of safety. The findings obtained in this study 
can be used as basis to devise improvement 
strategies on the current railway transportation 
system in Malaysia as well as design working 
environments which will enhance safety and 
reduce the risk of potential accidents which 
have been attributed to inappropriatemental 
workload and alertness levels. 
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