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INTRODUCTION

Malaria is a life-threatening disease caused by Plasmodium
parasites that kills more than 400 000 people worldwide
every year. In 2019, an estimated 229 million new malaria
infections and 409 000 deaths were recorded (World Health
Organization, 2020). Plasmodium knowlesi is classified as
a zoonotic malaria parasite as the macaque monkeys
serve as the reservoir host of this parasite species and
transmission from animal to human is via anopheline
mosquito. This species is now considered the fifth
Plasmodium species that can cause human malaria, especially
in forested areas of Southeast Asian countries (Chew et al.,

2012; Goh et al., 2013; Lee et al., 2015; Millar & Cox-Singh, 2015;
Zaw & Lin, 2019; Cooper et al., 2020). Malaysia has reported
zero indigenous cases for two consecutive years, 2018-2019.
However, about 3 213 cases of P. knowlesi were reported
in 2019, which is only slightly lower than in the previous
year, in which 4 000 cases were reported (World Health
Organization, 2020). Hence, research into the transmission
control method such as vaccine development and anti-
malarial drugs is essential as an effective control strategy.

Even though many attempts have been made to develop
an effective malaria vaccine, none has yet proven to be
successful. This may be due to challenges in identifying the
immunogenic antigens to be included as pivotal vaccine
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Malaria caused by Plasmodium knowlesi species has become a public health concern, especially
in Malaysia. Plasmodium knowlesi parasite which originates from the macaque species, infects
human through the bite of the Anopheles mosquitoes. Research on malaria vaccine has been
a continuous effort to eradicate the malaria infection, yet there is no vaccine against P.
knowlesi malaria to date. Apical membrane antigen 1 (AMA1) is a unique surface protein of
all apicomplexan parasites that plays a crucial role in parasite-host cell invasion and thus
has been a long-standing malaria vaccine candidate. The selection of protective epitopes in
silico has led to significant advances in the design of the vaccine. The present study aimed
to employ bioinformatics tools to predict the potential immunogenic B- and T-cell epitopes
in designing malaria vaccine targeting P. knowlesi AMA1 (PkAMA1). B-cell epitopes were
predicted using four bioinformatics tools, i.e., BepiPred, ABCpred, BcePred, and IEDB servers
whereas T-cell epitopes were predicted using two bioinformatics servers, i.e., NetMHCpan-
4.1 and NetMHCIIpan-4.0 targeting human major histocompatibility complex (MHC) class I
and class II molecules, respectively. The antigenicity of the selected epitopes computed by
both B- and T-cell predictors were further analyzed using the VaxiJen server. The results
demonstrated that PkAMA1 protein encompasses multi antigenic regions that have the
potential for the development of multi-epitope vaccine. Two B- and T-cell epitopes consensus
regions, i.e., NSGIRIDLGEDAEVGNSKYRIPAGKCP (codons 28-54) and KTHAASFVIAEDQNTSY
RHPAVYDEKNKT (codons 122-150) at domain I (DI) of PkAMA1 were reported. Advancement of
bioinformatics in characterization of the target protein may facilitate vaccine development
especially in vaccine design which is costly and cumbersome process. Thus, comprehensive
B-cell and T-cell epitope prediction of PkAMA1 offers a promising pipeline for the development
and design of multi-epitope vaccine against P. knowlesi.

Keywords: Apical membrane antigen 1 (AMA1); Plasmodium knowlesi; bioinformatics; B-cell
epitopes; T-cell epitopes.
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candidates. One such candidate is the apical membrane
antigen 1 (AMA1) which is a Plasmodium membrane surface
protein and long-standing malaria vaccine candidate.
Plasmodium is an obligate intracellular parasite. The ability
for host cell invasion determines the survivability of the
parasite. Plasmodium AMA1 protein is expressed abundantly
on the membrane surface of two infectives stages, i.e.,
sporozoites during human pre-erythrocytic cycle for
hepatocytes penetration to establish human infection as
well as merozoites for erythrocytes invasion during the last
stages of pre-erythrocytic and erythrocytic cycles (Triglia et
al., 2000; Silvie et al., 2004; Yang et al., 2017). Thus, making it a
potential multistage malaria vaccine in humans. Generally,
AMA1 is an integral membrane protein that consists of a
pro-sequence, an ectodomain subdivided to the domain I
(DI), domain II (DII), and domain III (DIII) stabilized by eight
pairs of disulfide bonds from 16 invariant cysteine residues,
followed by a transmembrane domain and a C-terminal
cytoplasmic domain (Hodder et al., 1996). Nowadays, many
successful anti-AMA1 vaccination studies have shown its
ability to induce a humoral immune response in both animal
and human clinical trials (Mahdi Abdel Hamid et al., 2011;
Laurens et al., 2013; Sirima et al., 2017).

The identification and recognition of protein epitopes
provide great interest in designing epitope-based vaccines
and understanding antibody production by the immune
system (Soria-Guerra et al., 2015). In general, B-cells recognize
the epitope within the antigen and in turn protects against
the pathogen by producing the antibodies. Besides that,
major histocompatibility complex (MHC) class I and class II
molecules present the peptides derived from the endocytosed
protein of the pathogen and subsequently stimulate the
cellular and humoral immunity against the pathogen. MHC
class I-bounded peptide induces the helper T lymphocytes
response, meanwhile, MHC class II-bounded peptide
stimulates the cytotoxic T-cells (CD8+) response (Nascimento
& Leite, 2012). Hence, over the past few decades, researchers
have developed in silico prediction method that reduces the
discovery process of the potential epitope of the antigen
known as epitope mapping (Soria-Guerra et al., 2015; Sanchez-
Trincado et al., 2017). In the present study, we described
the computational analysis of antigenic linear B- and T-cell
epitopes, which lie within the entire ectodomain of PkAMA1
protein using B- and T-cell prediction tools to seek potential
multi-epitope vaccine candidates.

MATERIALS AND METHODS

Protein sequence retrieval and physical and chemical properties
assessment
The amino acid sequence of AMA1 of P. knowlesi strain H
was obtained from the National Center for Biotechnology
Information (NCBI) protein database with the GenBank
accession number: XM_002259303 in FASTA format to conduct
bioinformatics assessment (Table 1). The entire ectodomain,
i.e., DI-II-III of PkAMA1 was served as the template for the
present structural and epitopes mapping study.

The Expert Protein Analysis System (ExPASy) ProtParam
tool (https://web.expasy.org/protparam/) (Gasteiger et al.,
2005) was used to characterize the various physical and
chemical properties of PkAMA1 protein, which consists of
a the total number of amino acids, molecular weight,
theoretical isoelectric point (pI), amino acid composition,
the total number of negatively (glutamic acid and aspartic
acid) and positively (lysine and arginine) charged residues,
atomic composition, instability index, aliphatic index, and
grand average of hydropathicity (GRAVY).

Prediction of B-cell epitopes
Four bioinformatics servers were used for the prediction of
B-cell epitopes, i.e., BepiPred-2.0 (http://www.cbs.dtu.dk/
services/BepiPred/) (Jespersen et al., 2017), Artificial neural
network (ANN) based B-cell epitope prediction (ABCpred)
( h t t p s : / / w e b s . i i i t d . e d u . i n / r a g h a v a / a b c p r e d / A B C _
submission.html) (Saha & Raghava, 2006), B-cell epitope
prediction (BcePred) (https://webs.iiitd.edu.in/raghava/
bcepred/bcepred_submission.html) (Saha & Raghava, 2004),
and The Immune Epitope Database (IEDB) (http://tools.iedb.
org/bcell/) (V ita et al., 2019) (Table 1). Prediction in both
BepiPred-2.0 and ABCpred servers were performed by loading
the entire ectodomain of PkAMA1 protein sequence in a FASTA
format as input data. In the Bepipred-2.0 prediction server,
the 0.5 was default threshold for prediction. Meanwhile, in
ABCpred server, a threshold was set at 0.8 and default window
length of 16 amino acid residues was applied. Peptides with
a higher score above threshold may have a greater probability
of being considered as an epitope.

The BcePred is an online server that uses seven physico-
chemical parameters such as hydrophilicity (Parker et al.,
1986), flexibility (Karplus & Schulz, 1985), accessibility (Emini
et al., 1985), turns (Pellequer et al., 1991), exposed surface
(Janin & Wodak, 1978), polarity (Ponnuswamy et al., 1980),
and antigenic propensity (Kolaskar & Tongaonkar, 1990)
to predict linear B-cell epitopes (Saha & Raghava, 2004).
The amino acid residue segment above the threshold
value is considered as predicted B-cell epitope and average
propensity of the amino acid according to a particular scale
were recorded. Meanwhile, the IEDB server predicts B-cell
epitopes based on the following six parameters: Bepipred
linear epitope prediction 2.0 (Jespersen et al., 2017), surface
accessibility (Emini et al., 1985), antigenicity (Kolaskar &
Tongaonkar, 1990), beta-turn (Chou & Fasman, 1978), flexibility
(Karplus & Schulz, 1985), and hydrophilicity (Parker et al., 1986).
Results output presented in graphs and the average (or
threshold), minimum, and maximum scores of each B-cell
epitope parameters were recorded.

Prediction of T-cell epitopes
Two online servers, i.e., NetMHCpan-4.1 (http://www.cbs.dtu.
dk/services/NetMHCpan-4.1/) and NetMHCIIpan-4.0 (http://
www.cbs.dtu.dk/services/NetMHCIIpan-4.0/) were used to
predict T-cell epitopes within PkAMA1 protein binding to
human MHC of class I and class II molecules, respectively
(Reynisson et al., 2020) (Table 1). Ten most frequent human
leukocyte antigen (HLA) alleles reference set for each of
MHC class I and MHC class II molecules based on the previous
study on P. vivax AMA1 (PvAMA1) were chosen for further
analysis (Jahangiri et al., 2019). The sequences were given in
plain format and the predicted peptide lengths in the
NetMHCpan-4.1 and NetMHCIIpan-4.0 methods were nine
and 15 amino acid residues, respectively. The findings are
presented in percentile rank (%Rank) of each peptide. In
NetMHCpan-4.1, if the %Rank is less than 0.5%, a peptide is
considered a strong binder, whereas if the %Rank above 2%,
the peptide is considered a poor binder. In NetMHCIIpan-
4.0, strong binders are those with a %Rank of less than 2%
and poor binders are those with a %Rank of more than 10%.

Prediction antigenicity of selected epitope peptide
The B- and T-cell epitopes predicted by B- and T-cell predictors
i.e., BepiPred-2.0, ABCpred, NetMHCpan-4.1 and NetMHCIIpan-
4.0 were subsequently screened for its antigenicity value
using VaxiJen 2.0 server (http://www.ddg-pharmfac.net/
vaxijen/VaxiJen/VaxiJen.html). This server is routinely
used for the prediction and classification of protective
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antigens and subunit vaccines based on the physicochemical
properties of protein (Doytchinova & Flower, 2007). Each of
the selected epitopes were submitted in FASTA format and
the parasite protein dataset was used to derive models for
prediction of PkAMA1 protein antigenicity. The epitope that
exceeds the default threshold of 0.5 antigenicity score was
considered as a protective antigen. Meanwhile, peptide that
had an antigenicity value that is less than the default
threshold value (0.5) was excluded from the potential
epitopes for vaccine design (Doytchinova & Flower, 2007).

RESULTS

Physical and chemical properties assessment
The ExPASy ProtParam Tool is the tool for computing different
physical and chemical properties of target protein. Generally,
the entire ectodomain of PkAMA1 protein sequence (446
amino acids) was analyzed. The theoretical isoelectric point
(pI) and molecular weight of recombinant PkAMA1 protein
are 5.98 and 51483.11 Dalton, respectively. The PkAMA1

aliphatic index was 66.05, indicating the relative volume
occupied by the aliphatic side chains (alanine, valine,
isoleucine, and leucine). This result suggested that the
AMA1 protein is thermally stable across a broad range of
temperatures. Furthermore, the Grand Average of Hydropathy
(GRAVY) that represents protein solubility was -0.754, in which
the negative GRAVY value indicates that the PkAMA1 protein
is particularly hydrophilic. The instability index of 34.04
indicates that the protein is stable in the test tube, as a
value of less than 40 is predicted to be stable.

Prediction of B-cell epitopes
The B-cell epitopes of PkAMA1 protein were predicted using
four bioinformatics tools, i.e., BepiPred-2.0, ABCpred, BcePred,
and IEDB prediction servers. The findings were displayed in
the form of scored peptides (epitope sequence) using
BepiPred-2.0 and ABCpred servers. Eight epitopes were
predicted in the output of the prediction via the BepiPred-
2.0 server (Table 2). Meanwhile, a total of 12 non-overlapping
B-cell epitopes were identified by the ABCpred server, which

Bioinformatics server

Expert Protein Analysis System
(ExPASy) ProtParam

BepiPred-2.0

Artificial neural network (ANN)
based B-cell epitope prediction
(ABCpred)

B-cell epitope prediction
(BcePred)

The Immune Epitope Database
(IEDB)

NetMHCpan-4.1

NetMHCIIpan-4.0

VaxiJen v2.0

Description

Computation tool for various
physical and chemical
parameters.

Sequence-based tool for the
prediction of continuous B-cell
epitopes based on random
forest algorithm trained on
epitopes derived from crystal
structures.

Sequence-based machine-
learning tool for the prediction of
continuous B-cell epitopes
based on neural networks (feed
forward and recurrent).

B-cell epitope prediction
methods based on
physicochemical parameters.

Antibody epitope prediction
using general basis amino acid
scales as parameters.

Prediction of binding of peptides
to any MHC molecule class I
using ANNs.

Prediction of binding of peptides
to any MHC molecule class II
using ANNs.

Prediction of antigenicity of
protective antigen or non-
antigen server without the use
of sequence alignment.

Input/ Threshold

GenBank accession number:
XM_002259303
Ectodomain of PkAMA1

Default threshold:  > 0.5

Threshold:  0.8
Default window length: 16
amino acids

Default threshold:
Hydrophilicity: 2
Flexibility: 1.9
Accessibility: 2
Turn: 1.9
Exposed surface: 2.4
Polarity: 2.3
Antigenic propensity: 1.8

Direct run for selected prediction
method, i.e., Bepipred 2.0,
accessibility, antigenicity, beta-
turn, flexibility, and hydrophilicity.

Strong binders: %Rank < 0.5

Strong binders: %Rank < 2.0

Antigenicity: 0.5
Targeted model: Parasite

Website/ Reference

https://web.expasy.org/
protparam/
(Gasteiger et al., 2005)

http://www.cbs.dtu.dk/services/
BepiPred
(Jespersen et al., 2017)

https://webs.iiitd.edu.in/
raghava/abcpred/
ABC_submission.html
(Saha & Raghava, 2006)

https://webs.iiitd.edu.in/
raghava/bcepred/
bcepred_submission.html
(Saha & Raghava, 2004)

http://tools.iedb.org/bcell/
(Vita et al., 2019)

http://www.cbs.dtu.dk/services/
NetMHCpan-4.1/
(Reynisson et al., 2020)

http://www.cbs.dtu.dk/services/
NetMHCIIpan-4.0/
(Reynisson et al., 2020)

http://www.ddg-pharmfac.net/
vaxijen/VaxiJen/VaxiJen.html
(Doytchinova & Flower, 2007)

Table 1. Bioinformatics assessment servers used for characterization of Plasmodium knowlesi apical membrane antigen 1 (PkAMA1)

Abbreviations: MHC, major histocompatibility complex; ANNs, Artificial neural networks (ANNs).
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is exceeding the threshold score of 0.8 (Table 3). The selected
epitopes by BepiPred-2.0 and ABCpred servers were further
analyzed via the VaxiJen 2.0 server and the antigenicity score
of each epitope was presented together with the findings
from the prediction tools. Peptides with antigenicity score
at 0.5 default threshold for parasite were selected (Table 2
and Table 3). In both BepiPred-2.0 and ABCpred programs,
the higher antigenicity score of the peptide represents the
higher probability to be an epitope. The highest ABCpred
score (0.94) was for epitope AEVGNSKYRIPAGKCP with a 0.7278
antigenicity score by VaxiJen 2.0. For BepiPrep-2.0, potential
peptides above 0.5 threshold score were presented in various
amino acid lengths.

BcePred and IEDB servers evaluate epitopes based on
various physicochemical propensity scales of PkAMA1. The
findings of each physicochemical property of BcePred and
IEDB B-cell epitope predictions are presented in Figure 1
and Figure 2, respectively. The B-cell epitopes selected based
on seven BcePred physicochemical predicting parameters
were aligned to the position of PkAMA1 for ease of data
interpretation (Figure 1). The average propensity of the amino
acid according to a particular scale for BcePred prediction
were as follow: hydrophilicity (1.9), flexibility (2.0),
accessibility (1.9), turn (2.4), exposed surface (2.3), polarity
(1.8), and antigenic propensity (1.9). Meanwhile, for IEDB
server, the higher predicting score (above threshold)
indicated a greater probability to be part of a potential
epitope. The threshold or average, maximum, and minimum
scores for each parameter were as follows: Bepipred
linear epitope prediction 2.0 (0.500, 0.261, 0.690), surface
accessibility (1.000, 0.065, 5.997), antigenicity (1.008, 0.852,
1.231), beta-turn (1.015, 0.647, 1.367), flexibility (1.005, 0.871,
1.120), and hydrophilicity (2.152, -4.543, 6.757) (Figure 2).

Prediction of T-cell epitopes
MHC-I and MHC-II binding epitopes data obtained from
NetMHCpan-4.1 and NetMHCIIpan-4.0 servers are listed in
Table 4. The servers provide information including HLA
alleles, predicted peptides, %Rank, and binding level (strong
or weak). Ten most frequent human MHC class I molecules
included HLA-A01:01, HLA-A02:01, HLA-A03:01, HLA-A26:01,
HLA-B07:02, HLA-B08:01, HLA-B15:01, HLA-B39:01, HLA-B40:01,
and HLA-B58:01 alleles as well as 10 human MHC class II
molecules included DRB1_0301, DRB1_0701, DRB3_0101,
DRB5_0101, HLA-DPA10201-DPB10101, HLA-DPA10301-DPB10402,
HLA-DPA10201-DPB11401, HLA-DQA10301-DQB10302, HLA-
DQA10101-DQB10501, and HLA-DQA10501-DQB10301 alleles
were analyzed. Only peptides that have a strong binding
level were reported (Table 4). Overall, a total of 24 and 23
potential epitopes on the PkAMA1 protein were reported,
which strongly bind to human MHC class I and MHC class II
alleles, respectively. Results showed that the strongest
binders belonged to allele HLA-B15:01 (RLKEGGFAF, 0.01
%Rank, 0.9970 antigenicity) for MHC class I and allele
DRB3_0101 (AMFCFKPDKNEKFDN, 0.03 %Rank, 0.6140
antigenicity) for MHC class II.

DISCUSSION

Potential potent epitopes in antigen can be predicted using
bioinformatics analysis, making vaccine production easier
and faster. Analyzing the characteristics of PkAMA1 antigen
using bioinformatics methods is a fundamental step in
designing an efficient protein-based vaccine. The advance-
ment of bioinformatic approaches provide the ability in
identifying parasite immune-protective epitopes and
incorporating them into malaria vaccine design. Several

Table 2. B-cell epitopes predicted by BepiPred-2.0 server on PkAMA1 protein with VaxiJen antigenicity score

Position Predicted epitope sequence Length of amino acid VaxiJen antigenicity score

5-19 ERSIRMSNPWKAFME 15 0.6196

36-51 GEDAEVGNSKYRIPAG 16 0.8638

130-138 IAEDQNTSY 9 0.9030

199-212 SNDWENKCPRKNLG 14 0.6717

284-301 LPVGAFNSDNFKSKGRGY 18 1.6199

338-378 PQEVDNEFPCSIYKDEIEREIKKQSRNMNLYSVDKERIVLP 41 0.5140

382-391 ISTDKESIKC 10 0.6779

411-420 VEKRAEIKEN 10 1.3332

Table 3. B-cell epitope predicted by ABCpred server on PkAMA1 protein with VaxiJen antigenicity score

Position Predicted epitope sequence (16 amino acid residues) Prediction score VaxiJen antigenicity score

1-16 GPIIERSIRMSNPWKA 0.89 0.7609

30-45 GIRIDLGEDAEVGNSK 0.88 0.9289

39-54 AEVGNSKYRIPAGKCP 0.94 0.7278

96-111 PITIANLKERYKENAD 0.80 0.7193

135-150 NTSYRHPAVYDEKNKT 0.92 0.5083

199-214 SNDWENKCPRKNLGNA 0.82 0.6436

217-232 GLWVDGNCEEIPYVNE 0.87 1.2273

248-263 ASASDQPRQYEEELTD 0.89 0.8364

297-312 KGRGYNWANFDSVNNK 0.89 0.8167

311-326 NKCYIFNTKPTCLIND 0.81 0.6749

321-336 TCLINDKNFFATTALS 0.82 0.9584

410-425 CVEKRAEIKENNEVII 0.80 0.9352
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Figure 1. B-cell epitopes predicted on PkAMA1 protein using BcePred based on seven physicochemical predicting parameters,
i.e., hydrophilicity, flexibility, accessibility, turns, exposed surface, polarity, and antigenic propensity.

previous studies have performed reverse vaccinology
research, using bioinformatics tools in designing epitope-
based vaccine (Singh et al., 2010; Durojaye et al., 2018;
Motamedpour et al., 2020; Zawawi et al., 2020). A subunit
vaccine based on predicted epitopes elicits a strong immune
response by inducing humoral and cell-mediated immunity
against the disease. Development of malaria vaccine is still
in continuous research despite emergence of promising
vaccine candidates. Genetic variation within 5 188 protein-
encoding P. knowlesi genes in a single strain, as well as
specific protein expression at each stage of the complex
malaria life cycle, pose challenges in developing a vaccine
that can effectively provide protective immunity against
malaria disease (Pain et al., 2008).

Various bioinformatics tools were applied in this study
to obtain more information on the characteristics of the
PkAMA1 protein, which could be useful in vaccine design.
Since this is the first study of PkAMA1 prediction of B-cell
and T-cell epitopes and some other characteristics, therefore
we have only limited reference data to compare our results.
There was only one study reported on the analysis of AMA1
in identifying potential epitopes for P. vivax vaccine design
(Jahangiri et al., 2019).

Generally, immunogenic ectodomain of PkAMA1 is
subdivided into three immunogenic domains, i.e., domain I
(DI: 206 amino acids with residue positions of 1-206),
domain II (DII: 138 amino acids with residue positions of
207-344), and domain III (DIII: 102 amino acids with residue
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Figure 2. The B-cell epitope prediction using Immune Epitope Database (IEDB) server based on six parameters. (A) Bepipred
linear epitope prediction 2.0, (B) accessibility, (C) antigenicity, (D) beta-turn, (E) flexibility, and (F) hydrophilicity. The score of
each residue is plotted on a Y-axes and the X-axes correspond to the residue positions of PkAMA1 protein sequence. The larger
score for the residues is interpreted as that the residue with a higher probability to be part of a potential epitope (above the
threshold score).

positions of 345-446) (Haron et al., 2020). The predicted B-cell
epitopes using BepiPred-2.0 and ABCpred as well as T-cell
epitopes using NetMHCpan-4.1 and NetMHCIIpan-4.0 were
aligned for immunogenic and antigenicity epitopes mapping
(Figure 3). The ability of these bioinformatics tools in
identifying antigenic linear B-cell epitopes and T-cell
epitopes within the entire ectodomain of PkAMA1 is

beneficial for the development of a synthetic epitope-based
vaccine. Theoretically, the multi-epitope vaccine elicits
immune responses based on short immunogenic sequences
instead of large protein, which is typically used for
recombinant vaccine technology.

BepiPred-2.0, ABCpred, BcePred, and IEDB prediction
server are widely used as linear B-cell epitope predictors
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Figure 3. Analysis of B and T-cell epitopes predicted four bioinformatics tools i.e., BepiPred-2.0, ABCpred, NetMHCpan-4.1, and
NetMHCIIpan-4.0 servers.

(Vita et al., 2019; Galanis et al., 2021). The latest version of
BepiPred-2.0 was developed in 2017, based on random
forests algorithm trained on B-cell epitopes derived from
protein structures of antigen-antibody complexes (Jespersen
et al., 2017). Epitope data obtained from crystal structures
are considered as a higher quality that significantly
enhanced the predictive power. This method performs better
than other available methods for sequence-based epitope
prediction both on epitope data derived from three-
dimensional structures and on a wide set of linear epitopes
downloaded from the IEDB database, making it a reliable
and effective tool for predicting linear B-cell epitopes
(Sanchez-Trincado et al., 2017; Galanis et al., 2019, Galanis et
al., 2021). The best performance B-cell epitope predictor is
BepiPred as it achieved the highest Matthews correlation
coefficient value that measures the overall accuracy of the
prediction (Galanis et al., 2019). A highly antigenic B-cell
epitope proven to be serologically reactive during natural
infection was discovered within the PvAMA1 vaccine
candidate using a BepiPred server (Bueno et al., 2011).
ABCpred predicts continuous epitopes for protein sequences
using a recurrent neural network. The users can choose their
expected epitope length as the window size used for
prediction includes 10, 12, 14, 16, 18 and 20. The 16 amino
acid residues window size achieves the highest accuracy of
65.93% (Saha & Raghava, 2006). Two high antigenicity B-cell
epitopes (>1 antigenicity score) were predicted via BepiPrep-
2.0 server, i.e., LPVGAFNSDNFKSKGRGY located within DII
(antigenicity score of 1.6199) and VEKRAEIKEN located within

DIII (antigenicity score of 1.3332). The VEKRAEIKEN, which is
also a partial sequence of an epitope, i.e., CVEKRAEIKENNEVII
(codons 410-425 and antigenicity score of 0.9352) obtained
via ABCpred prediction as well as BcePred prediction on
accessibility and polarity propensity scales (Figure 1).

BcePred and IEDB prediction methods are bioinformatics
tools that are currently used in this study to predict linear B-
cell epitopes based on physicochemical propensity scales
of amino acid properties. For BcePred prediction, regions of
epitopes that fulfil the protein characterization based
on its seven propensity scales, i.e., hydrophilicity, flexibility,
accessibility, turns, exposed surface, polarity, and antigenic
propensity have potential to be included in vaccine design
as they can be recognized by antibodies. It is important to
classify potential regions and non-significant regions of
each scale. Successful identification and classification of
antigenic protein such as surface accessibility, antigenicity,
beta-turn, flexibility, and hydrophilicity regions are of
importance in the selection of suitable B-cell epitopes design
(Zobayer et al., 2019). The hydrophilic region is crucial for
inducing host immune response, while beta-turn region is
an element in the protein secondary structure, which is
important for the epitope vaccine design (Zobayer et al., 2019).
Based on each of the physicochemical properties, the
accuracy of BcePred prediction varies from 52.92% to 57.53%
(Saha & Raghava, 2004). The accuracy of prediction enhanced
by evaluation of the combination of two or more parameters.
The highest accuracy of 58.70% on a data set was achieved
in a combination of four amino acid properties, i.e.,
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Table 4. Prediction of human major MHC class I and MHC class II binding epitopes on PkAMA1 protein using NetMHCpan-4.1 and NetMHCIIpan-4.0
servers with VaxiJen antigenicity score

Allele (number, n) Position Predicted epitope sequence %Rank VaxiJen antigenicity score

(A) NetMHCpan-4.1: Human MHC class I binding epitope prediction (SB: <0.5 %Rank)

HLA-A01:01 (n=3) 130-138 IAEDQNTSY 0.06 0.9030
38-46 DAEVGNSKY 0.20 1.0032

249-257 SASDQPRQY 0.23 0.5342

HLA-A02:01 (n=1) 69-77 FLTPVATGA 0.33 1.1651

HLA-A26:01 (n=3) 249-257 SASDQPRQY 0.21 0.5342
357-365 EIKKQSRNM 0.29 0.8812
281-289 SAFLPVGAF 0.31 1.2073

HLA-B07:02 (n=1) 253-261 QPRQYEEEL 0.05 1.2590

HLA-B08:01 (n=3) 437-445 DGKHKKKML 0.12 1.2331
253-261 QPRQYEEEL 0.23 1.2590
357-365 EIKKQSRNM 0.37 0.8812

HLA-B15:01 (n=5) 79-87 RLKEGGFAF 0.01 0.9970
360-368 KQSRNMNLY 0.08 0.7704

77-85 AQRLKEGGF 0.29 1.8973
281-289 SAFLPVGAF 0.37 1.2073
249-257 SASDQPRQY 0.44 0.5342

HLA-B39:01 (n=4) 275-283 NRDMIKSAF 0.13 1.1542
186-194 EKFDNLVYL 1.15 0.7741
350-358 YKDEIEREI 0.23 0.7608
104-112 ERYKENADL 0.26 0.8829

HLA-B40:01 (n=2) 415-423 AEIKENNEV 0.10 0.9380
421-429 NEVIIKEEF 0.42 0.8750

HLA-B58:01 (n=2) 6-14 RSIRMSNPW 0.05 0.5101
211-219 LGNAKFGLW 0.50 1.0246

(B) NetMHCIIpan-4.0: Human MHC class II binding epitope prediction (SB: <2 %Rank)

DRB1_0301 (n=5) 127-141 SFVIAEDQNTSYRHP 0.32 0.7607
28-42 NSGIRIDLGEDAEVG 0.65 0.7932

176-190 AMFCFKPDKNEKFDN 1.22 0.6140
422-436 EVIIKEEFKEDYENP 1.25 1.0296
320-334 PTCLINDKNFFATTA 1.95 0.9884

DRB1_0701 (n=1) 326-340 DKNFFATTALSHPQE 0.22 0.9362

DRB3_0101 (n=4) 176-190 AMFCFKPDKNEKFDN 0.03 0.6140
127-141 SFVIAEDQNTSYRHP 0.27 0.7607
426-440 KEEFKEDYENPDGKH 0.64 0.5879

28-42 NSGIRIDLGEDAEVG 0.65 0.7932

DRB5_0101 (n=2) 326-340 DKNFFATTALSHPQE 1.04 0.9362
279-293 IKSAFLPVGAFNSDN 1.61 0.9234

HLA-DPA10201-DPB10101 (n=3) 421-435 NEVIIKEEFKEDYEN 0.22 1.0060
274-288 NNRDMIKSAFLPVGA 0.48 0.8665
326-340 DKNFFATTALSHPQE 0.54 0.9362

HLA-DPA10301-DPB10402 (n=3) 421-435 NEVIIKEEFKEDYEN 0.22 1.0060
274-288 NNRDMIKSAFLPVGA 0.37 0.8665
326-340 DKNFFATTALSHPQE 0.49 0.9362

HLA-DPA10201-DPB11401 (n=1) 326-340 DKNFFATTALSHPQE 0.22 0.9362

HLA-DQA10301-DQB10302 (n=3) 122-136 KTHAASFVIAEDQNT 0.95 0.7835
426-440 KEEFKEDYENPDGKH 1.21 0.5879
326-340 DKNFFATTALSHPQE 1.30 0.9362

HLA-DQA10101-DQB10501 (n=1) 122-136 KTHAASFVIAEDQNT 1.70 0.7835

Major histocompatibility complex (MHC); HLA = human leucocyte antigen; %Rank = percentile rank; SB = strong binder.



273

Azazi et al. (2021), Tropical Biomedicine 38(3): 265-275

hydrophilicity, flexibility, polarity, and surface accessibility
in B-cell epitopes prediction (Saha & Raghava, 2004; Galanis
et al., 2019; Galanis et al., 2021). However, a previous study
found that the prediction of linear B-cell epitopes based on
amino acid scales has a poor performance, thus other B-cell
epitope prediction methods such as BepiPred-2.0 and
ABCpred were preferred (Sanchez-Trincado et al., 2017).

The emergence of bioinformatics tools, i.e., NetMHCpan-
4.1 and NetMHCIIpan-4.0 have enabled the prediction of
MHC of class I and class II binding epitopes, respectively
(Reynisson et al., 2020). MHC class II proteins in humans are
expressed on the surface of antigen presenting cells such
as macrophages, dendritic cells, and B lymphocytes. They
can bind to peptides with a length of 13 to 18 amino acids
(Sanchez-Trincado et al., 2017). Meanwhile, the complex of
immunogenic peptide-MHC class I is expressed on nucleated
cells, where it is recognized by cytotoxic T-cells and
consequently triggers the immune response. Generally, MHC
class I bound peptides have eight to 10 amino acid residues
(Sanchez-Trincado et al., 2017). The binding affinity of peptide
antigen to one allele and another differs, allowing the driving
immune responses to increase or decrease. According to the
corresponding %Rank, all listed peptides, which can bind
strongly to MHC class I and MHC class II molecules are
potential immunodominant T-cell epitopes and useful
markers for further P. knowlesi vaccine development. Protein
antigenicity makes that protein detectable via the immune
system. The antigenicity of each epitope is further assessed
with VaxiJen at 0.5 threshold for parasites dataset. VaxiJen
server is an immunoinformatic strategy that integrate
both immunology and vaccinology studies to distinguish
immunogens and non-immunogens based on their similarity
to other existing immune-protective antigen. The accuracy of
the server in predicting immunogenicity of the antigens
within a parasite range from 78% to 97% and the peptide
with the higher immunogenicity score is thought to have a
higher probability of being protective (Zaharieva et al., 2017).

Among the ten MHC class I and MHC class II alleles
chosen for this study, only HLA-A03:01 and HLA-DQA10501-
DQB10301, respectively did not score any strong binding
epitope. Most of the MHC strong binders belonged to
HLA-B15:01 allele (MHC class I, n=5) and DRB1_0301 allele
(MHC class II, n=5). Two MHC class I strong binders, i.e.,
RLKEGGFAF and RSIRMSNPW are hit to the similar epitopes
of PvAMA1 study (RLKDGGFAF and RSTRMSNPW), which also
showed that strong binders belonged to similar allele
(Jahangiri et al., 2019). However, they found that the strongest
binding epitopes of PvAMA1 for MHC class II belonged to
HLA-DPA10201-DPB11401 allele, while in our study, the
strongest binding epitope (AMFCKPDKNEKFDN) belonged to
DRB3_0101. All the MHC class II strong binders hit at least
twice and even up to six times, i.e., DKNFFATTALSHPQE (codons
326-340 of DII with prediction scores ranged from 0.22 to 1.30
with antigenicity score of 0.9384) and a partial peptide
sequence, i.e., PTCLINDKNFFATTA (codons 320-334 of DII with
antigenicity score of 0.9884) amongst 10 tested MHC class II
alleles. Interestingly, similar epitope (DKNFIATTALSHPQEV)
is the strongest binder for PvAMA1 belonged to HLA-
DPA10201-DPB11401 and also DRB1_0701 alleles (Jahangiri
et al., 2019). The TCLINDKNFFATTALS (codons 321-336 with
antigenicity score of 0.9584) is also a ABCpred-predicted
B-cell epitope candidate in the present study.

Mapping of all potential B- and T-cell epitopes obtained
from seven prediction tools used in the present study
found two significant immunogenic epitope regions,
i.e., NSGIRIDLGEDAEVGNSKYRIPAGKCP (codons 28-54) and

KTHAASFVIAEDQNTSYRHPAVYDEKNKT (codons 122-150) at
domain I (DI) of PkAMA1 which reported with short consensus
sequence of DAEVG and NTSY, respectively. Interestingly,
peptides located in DI of PvAMA1 (EVENAKYRIPAGRCPVFGKG)
and P. falciparum AMA1 (PfAMA1) (DI, DAEVAGTQYRLPSGKCPVFG;
DI-II, VVDNWEKVCPRKNLQNAKFG, similar to codons 198-217
in PkAMA1; and DII, MIKSAFLPTGAFKADRYKSH, similar
to codons 278-297 in PkAMA1) were critical erythrocyte
binding conserved peptides, which are previously reported
B-cell epitopes that was capable to induce antibodies to
block merozoite invasion into host cell erythrocytes and
development (Urquiza et al., 2000; Arévalo-Pinzón et al., 2017).
In term of B-cell epitope prediction servers used in the study,
the potential epitopes were hit to almost similar regions
despite different predicting parameters from each of server
used. For instance, ERSIRMSNPWKAFME (codons 5-19 with
antigenicity score of 0.6196), GEDAEVGNSKYRIPAG (codons
36-51 with antigenicity score of 0.8638), SNDWENKCPRKNLG
(codons 199-212 with antigenicity score of 0.6717), and
VEKRAEIKEN (codons 411-420 with antigenicity score of 1.3332).
Meanwhile, for T-cell prediction, there were some similar
hit regions on MHC class I and MHC class II alleles, such
as DAEVG (codons 38-42), IAEDQNTSY (codons 130-138,
also BepiPred-2.0 B-cell epitope), EKFDN (codons 186-190),
NRDMIKSAFLPVGAF (codons 275-289), and NEVIIKEEF (codons
421-429).

Peptides (epitopes) with the ability to be recognized by
HLA-DRB1 alleles are preferred vaccine candidates because
of their ability to elicit an immune response that generates
protection (Stern & Calvo-Calle, 2009; López et al., 2018).
Depending on the peptides bound to MHC receptors, T-cells
can trigger stronger immune responses after recognizing an
antigen processing cell (Blum et al., 2013). A previous study
reported that in silico prediction of P. vivax rhoptry neck
protein 2 precursor (RON2) epitope by NetMHCpan program
successfully induced a naturally-acquired T-cell immune
response in P. vivax-exposed individuals (López et al., 2018).
RON2 is another essential apicomplexan protein that
will bind to AMA1 to facilitate the formation of moving
junction to drive the parasite binding and invasion abilities.
The feasibility of multi-epitope vaccine development
is supported by the cytokines produced by volunteers
immunized with irradiated sporozoite able to bind to a wide
range of parasite antigens rather than focusing on specific
proteins or epitopes (Doolan et al., 2003). The advancement
in bioinformatics tools not only makes multi-epitope
vaccine design and development feasible, but also enables
a cross-species protection, especially for those antigens
possessed an abundance of B- and T-cell epitopes with high
immunogenicity and antigenicity such as Plasmodium AMA1
protein.

CONCLUSION

The results presented in this study illustrate a com-
prehensive analysis of PkAMA1 antigens using bioinformatics
tools. To the best of our knowledge, this is the first study of
the comprehensive B- and T-cell epitope prediction and
analysis of the physicochemical characteristics of PkAMA1
using various reliable bioinformatics tools. All data suggest
that PkAMA1 protein contains potential epitopes scattered
along the different domains, and thus could be used for
vaccine development against P. knowlesi malaria. However,
there is a need of further empirical validation to prove this
in silico work.
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